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Introduction

Classification problem: different views

1 Sampling of an unknown probability distribution whose approximation
governs the prediction of the class for a new item, Cornuejols et
al.(2020) [5].

2 Logic-based approaches to classification, Dubois and Prade (2020) [6].
▶ Example: Boros et al. (2011) [2] investigates the “justifiability” of

rule-based classifiers.

This paper: adopt the second alternative !

Idea: Comparative reasoning between data.

Option 1: Systematic analysis of the differences between the available
examples.

Option 2: Looks for similarities (beyond k-nearest neighbors methods)
between input examples.
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First Approach : Problem

Input
▶ a set of examples E = {(x⃗ i , cl(x⃗ i )) | i = 1, · · · ,m},

▶ x⃗ i = (x i1, · · · , x ij , · · · , x in) is a vector of n attributes of Boolean values.

▶ cl(x⃗ i ) denotes its class where cl(x⃗ i ) ∈ {c1, · · · , c|C |}).

Exploiting difference

▶ Consider two examples x⃗ i and x⃗k .

▶ Equal on a subset of attributes Equi,k = {j | x ij = xkj }

▶ Differ on the subset Dif i,k = {j | x ij ̸= xkj }.

There are two cases:

▶ If cl(x⃗ i ) = cl(x⃗k), it means that the difference between x⃗ i and x⃗k

observed on Dif i,k does not affect the class.

▶ if cl(x⃗ i ) ̸= cl(x⃗k), it means that the change in Dif i,k is enough for

explaining the change from cl(x⃗ i ) to cl(x⃗k).
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Exploiting differences and Bongard problems: Basic idea

Input:

d⃗ ̸∈ E : a new item s.t: cl(d⃗) is not known.

Consider first the items that differ from d⃗ in only one attribute.

Let NN(d⃗) be the set of these nearest neighbors of d⃗ , and c⃗ be one
of them.

Strategy: Look at all the pairs (a⃗, b⃗) ∈ E2 s.t: dif (a⃗, b⃗) = dif (c⃗ , d⃗)

(Equa⃗,b⃗ = Equc⃗,d⃗) to assess the effect of this difference:

Case 1: ∀(a⃗, b⃗) s.t: dif (a⃗, b⃗) = dif (c⃗ , d⃗), cl(a⃗) = cl(b⃗)
▶ Expect cl(d⃗) = cl(c⃗) according to the considered c⃗ ;

Case 2: ∀(a⃗, b⃗) we have cl(a⃗) ̸= cl(b⃗)
▶ Predict cl(d⃗) = cl(b⃗) according to the considered c⃗ if cl(c⃗) = cl(a⃗).

Case 3: Conflict ! Two non-empty sets of pairs:
▶ Set S=

1 : pairs s.t: cl(a⃗) = cl(b⃗).

▶ Set S ̸=
2 : pairs such that cl(a⃗) ̸= cl(b⃗).
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First Approach: Solving Bongard problem

Why the same change inside the pairs leads to different classes or not for
the items in the pairs ?

Proposed solution: Bongard problem, Bongard (1967) [1]

Look for a property P that is :

True in the context of the pairs where cl(a⃗) = cl(b⃗)

False for the pairs such that cl(a⃗) ̸= cl(b⃗).

If a solution P exist:

▶ If d⃗ has property/ies P then cl(d⃗) = cl(c⃗) for this c⃗ ;

▶ otherwise cl(d⃗) = cl(b⃗) for this c⃗ if cl(c⃗) = cl(a⃗).

If no solution P can be found, select another c⃗ ∈ NN(d⃗).

Finally: apply a vote on the predictions made by successful neighbors.
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Bongard problem: Example

Abstract dataset Or2 (7 Boolean Attributes): Or2 : cl(x) = x1ORx2

Figure: Illustrative example on How to solve a Bongard problem?
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Second Approach: Using triplets of similar items

Very simple strategy !
⇒ Consider triplets instead of pairs.

Input: a set of examples E = {(x⃗ i , cl(x⃗ i )) | i = 1, · · · ,m},
Goal: Predict d⃗ ̸∈ E : a new item s.t: cl(d⃗) is not known.

Methodology:

1 Partition E into sets C of examples with the same label l , l is the
class label of the set C.

2 Compute Equ(a⃗, b⃗, c⃗) = {j | aj = bj = cj}
3 Select only triplets ts with high number of equal attributes i.e.,

|Equ(a⃗, b⃗, c⃗)| ≥ θ ∗ NumberOfAttributes (θ is a fixed threshold).

4 For each of these triplets ts , if d⃗ agree with ts on the same attributes,
increment the score for this class.

5 Allocate to d⃗ the class with the highest score.
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Analogical proportions

Definition

“a is to b as c is to d”
a differs from b as c differs from d

and b differs from a as d differs from c”

a : b :: c : d ≜
((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d))

a : b :: c : d is true only for 6 valuations:
(a, b, c , d) ∈ {(0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 1, 1), (1, 1, 0, 0),
(1, 0, 1, 0), (0, 1, 0, 1)}

AP between vectors: a⃗ : b⃗ :: c⃗ : d⃗ if ∀i = 1, . . . , n, ai : bi :: ci : di

Analogical Inference a : b :: c : x may not have a solution in B
neither 0 : 1 :: 1 : x nor 1 : 0 :: 0 : x have a solution

▶ when it exists (iff (a≡b) ∨ (a≡c) holds) it is unique
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Inverse paralogy

Bongard problems are related to “Inverse Paralogy”(IP).

Definition

A quaternary logical connective: “what a and b have in common c
and d have not it in common, and vice versa”.

IP(a, b, c, d)= [(a ∧b) ≡ (¬c ∧ ¬d)] ∧ [(¬a ∧ ¬b) ≡ (c ∧ d)].

IP(a, b, c, d) is true only for 6 valuations:

(a, b, c , d) ∈ {(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 1, 0), (1, 0, 0, 1),
(1, 0, 1, 0), (0, 1, 0, 1)}
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Baseline Analogical Classifier

A brute force AP-classifier Bounhas et al. (2017) [3] for comparison:

1 Look for each triplet (a⃗, b⃗, c⃗) in the example set.

2 Solve cl(a⃗) : cl(b⃗) :: cl(c⃗) : y .

3 If the previous analogical equation on classes has a solution l and if
the analogical equation on the attributes is valid, i.e., a⃗ : b⃗ :: c⃗ : d⃗ ,
increase score(l) by 1.

4 Assign to d⃗ the class label having the highest score as
cl(d⃗) = argmaxl(score(l))
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Experimental Validation

Datasets:

1 8 Abstract Boolean functions (7 attributes):

▶ And2 : cl(x) = x1ANDx2
▶ Or2 : cl(x) = x1ORx2
▶ Not : cl(x) = x1ANDNot(x2)

▶ And7 : cl(x) = x1AND...ANDx7
▶ Or7 : cl(x) = x1OR...ORx7
▶ XOR : cl(x) = x1XORx2
▶ XORMin : cl(x) = x1XORx2, if (Sum(x1, ..., x7) < 6)

Min(x1, ..., x7), otherwise

▶ Sum7 : cl(x) = Sum(x1, ..., x7) = 2

2 U.C.I. Machine Learning repository [7]

▶ Binary classes databases: Monk1, Monk2, Monk3 and TicTacToe.

▶ Multiple classes databases: Balance, Car and Hayes-Roth.
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▶ Binary classes databases: Monk1, Monk2, Monk3 and TicTacToe.

▶ Multiple classes databases: Balance, Car and Hayes-Roth.
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Experimental Validation

Table: Description of datasets

Datasets Ins. Nom. Att. Bin. Att. Nb class Def.:cl(x⃗) =

And2 128 - 7 2 x1ANDx2
Or2 128 - 7 2 x1ORx2
Not 128 - 7 2 x1ANDNot(x2)
And7 128 - 7 2 x1AND...ANDx7
Or7 128 - 7 2 x1OR...ORx7
XOR 128 - 7 2 x1XORx2
XORMin 128 - 7 2 x1XORx2, if (Sum(x1, ..., x7) < 6)

Min(x1, ..., x7), otherwise
Sum7 128 - 7 2 Sum(x1, ..., x7) = 2

Monk1 432 6 15 2 -
Monk2 432 6 15 2 -
Monk3 432 6 15 2 -
TicTacToe 521 9 27 2 -
Balance 625 4 20 3 -
Car 743 7 21 4 -
Hayes-Roth 132 5 15 3 -
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Experimental Validation

Testing strategy

• Boolean functions: Random samplings of 7 Boolean variables.

• U.C.I. ML datasets: All nominal attributes have been binarized using
the free Weka software.

• Standard 10-fold cross-validation.

• Average accuracies over the 10 different values.

• Again: an Inner cross-validation for parameter optimization using the
E only.

▶ Algo1 : k = 1,3,5, 7

▶ Algo2 : θ = 0.5,0.6,0.7,0.8

▶ kNN : k = 1,2, ..., 11

• Best parameter for each classifier is used for predicting the label for
testing examples.
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Results

Table: Accuracy results (means and standard deviations)

Dataset Algo1 Algo2 BaselineAC kNN Odd3

k∗ θ∗ k∗ [4]

And2 100 1 100 0.5 100 99.53 ± 1,08 1 -

Or2 100 1 99.84 ± 0.46 0.5 100 100 1 -

Not 100 1 100 0.5 100 99.69 ± 0.92 1 -

And7 98.28 ± 3,96 3 96.88 ± 4.60 0.6 96.88 ± 4.60 99.69 ± 0.92 1 -

Or7 98.44 ± 3,41 3 98.44 ± 3.41 0.6 98.44 ± 3.41 98.44 ± 3.10 1 -

XOR 100 1 100 0.5 100 99.38 ± 1.58 3 -

XORMin 96.41 ± 4.70 3 96.72 ± 4.39 0.5 96.88 ± 4,08 93.75 ± 6.29 1 -

Sum7 99.06 ± 2.49 5 83.59 ± 8.28 0.5 82.03 ± 8.27 82.50 ± 10.92 8 -

Monk1 100 1 100 0.7 99.95 ± 0.14 99.95 ± 0.14 3 99.31±3.39

Monk2 100 1 67.13 ± 6.14 0.5 99.54 ± 0.82 64.44 ± 6.99 11 60.93±4.16

Monk3 100 1 100 0.7 97.36 ± 1.78 100 1 99.95±0.05

TicTacToe 100 1 97.50 ± 2.28 0.7 100 98.27 ± 1.77 1 -

Balance 95.36 ± 2.59 7 89.84 ± 3.06 0.5 90.05 ± 3.35 83.94 ± 4.23 11 88.62±3.4

Car 95.33 ± 2.40 3 94.03 ± 3.03 0.8 91.22 ± 3.23 92.33 ±3.10 1 90.93±4.03

Hayes-Roth 80.30 ± 10.65 3 76.71 ± 12.74 0.5 80.45 ± 9.22 61.36 ± 13.46 3 79.37±9.74

Average 97.54 - 93.37 - 95.5 91.5 - -
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Main results

1 Synthetic Boolean functions :

• Algo 1: best classifier (average accuracy) for all datasets except And7
function (kNN : best for this dataset).

• Algo 1: largely better than Algo2, the BaselineAC and kNN (optimized
k) for dataset Sum7 (all classifiers achieve an accuracy of about 80%
while Algo1 achieves 99%).

• Algo2: as good as or performs significantly better than the BaselineAC
for most datasets (see the Sum7 dataset).

2 U.C.I. ML datasets :

• Algo 1: very good accuracy for binary or multiple class problems.

• Algo 1: significantly outperforms the kNN and the BaselineAC
(Monk3, Balance and Car).

• Overall Algo 2 is significantly better than the k-NN for most datasets.

• As expected: better results for small values of k (k = 1) and θ
(θ = 0.5) for most datasets.
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Results : Main conclusions

Why Algo 1 is better than to Algo 2 (and also k-NN) ?

• Algo 1 uses examples with patterns of types s : s :: t : y and
s : t :: s : y (same/different classes).

• Algo 2 exploits only patterns of type s : s :: s : y (Restriction !).

• Algo 1 : Neighborhood of the item to be classified, quite different
from the classical kNN.

▶ Classify d⃗ as its kNN c⃗ only if for all pairs (a⃗, b⃗) ∈ E2 s.t:

dif (a⃗, b⃗) = dif (c⃗ , d⃗), cl(a⃗) = cl(b⃗).

▶ Classify d⃗ as item(s) b⃗ (not as c⃗ ) if for all pairs (a⃗, b⃗) ∈ E2,

cl(a⃗) ̸= cl(b⃗).

Conclusion

Algo 1 applies a deeper investigation on the relationship between the
change in attribute values that may affect/not affect the change in the
class label.
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Results : Bongard Problem

Strategy:

Compute the average proportion of examples that has been classified by
solving Bongard problems

PBongard =
Nbr of classified examples by solving Bongard pbms*100

Nbr of classified examples

Results:

For some datasets (XOR), no Bongard problem has been solved:
PBongard = 0 (case 1 or case 2 and never case 3 !) ⇒ No prediction error!

And2, Or2, Not, Car: PBongard > 20% (case 3 ) ⇒ Still no prediction error !

Monk1, Monk2, Monk3, Hayes-Roth: PBongard > 1%

Note:

If solving the Bongard problem lead to no property, d⃗ remains unclassified
according to this NN c⃗ .

Algo1 passes to another nearest neighbor.
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Conclusion

The paper investigates two new classification methods using
comparative reasoning.

Processing of pairs or triplets of examples rather than individual
examples (CBR).

First Approach: exploits pairs and appears especially efficient.

Comparative reasoning of pairs of examples: Strategy:

Pairs S=
1 : The change in attribute values causes no effect on the class.

Pairs S ̸=
2 : The change in attribute values causes a change of class.

Ambiguity of comparative reasoning result ⇒ Solve Bongard
problems for separating the contexts.

The first approach outperforms the BaselineAC and k-NN.
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Future directions

Extensions ?

1 Extend the experimentation to a variety of datasets.

2 Extension of the first procedure to deal with nominal attributes.

3 First approach: Simple and natural procedure that may help for
explanation:

What are the properties/attributes that are responsible for the change
in class label?

Thank you !
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