# Tackling Uncertainty in Coalitional Games

### JEAN-PAUL DOIGNON

### Université Libre de Bruxelles

Based on the IJCAI(2022) paper with

# MELTEM ÖZTÜRK and STEFANO MORETTI Université Paris Dauphine

15th International Conference on Scalable Uncertainty Management (SUM2022) (paper and slides are available)

Supported by French National Research Agency under THEMIS ANR-20-CE23-0018

Marks for the joint homeworks of three students a, b and c:

| $\varnothing \mapsto 0$ | { <i>c</i> } → 3        |
|-------------------------|-------------------------|
| <i>{a}</i> → 5          | $\{a, c\} \mapsto 4$    |
| <i>{b}</i> → 2          | $\{b,c\} \mapsto 3$     |
| <i>{a, b}</i> → 6       | $\{a, b, c\} \mapsto 8$ |

How to assign individual notes?

What if marks are uncertain?

Marks for the joint homeworks of three students a, b and c:

| $\varnothing \mapsto 0$     | <i>{c</i> } → 3         |
|-----------------------------|-------------------------|
| <i>{a}</i> → 5              | $\{a, c\} \mapsto 4$    |
| <i>{b}</i> → 2              | $\{b,c\} \mapsto 3$     |
| { <i>a</i> , <i>b</i> } ↔ 6 | $\{a, b, c\} \mapsto 8$ |

How to assign individual notes?

What if marks are uncertain?

Given a worth for each coalition of economic players,

how to define player scores? (many proposals known);

what if the coalitions worths are uncertain?

۱

For player *c*, say, compute the numerical differences when *c* joins:

$$v(\emptyset) = 0 v(\{c\}) = 3 v(\{a\}) = 5 v(\{a, c\}) = 4 v(\{b\}) = 2 v(\{b, c\}) = 3 v(\{a, b\}) = 6 v(\{a, b, c\}) = 8$$

$$\begin{array}{rcl} v(\{c\}) - v(\varnothing) &=& 3\\ v(\{a,c\}) - v(\{a\}) &=& -1\\ v(\{b,c\}) - v(\{b\}) &=& 1\\ v(\{a,b,c\}) - v(\{a,b\}) &=& 2 \end{array}$$

To define the score of *c*,

۱

For player *c*, say, compute the numerical differences when *c* joins:

$$\begin{array}{c|cccc} v(\varnothing) = 0 & v(\{c\}) = 3 \\ v(\{a\}) = 5 & v(\{a,c\}) = 4 \\ v(\{b\}) = 2 & v(\{b,c\}) = 3 \\ v(\{a,b\}) = 6 & v(\{a,b,c\}) = 8 \end{array} \end{array} \begin{array}{c|cccc} v(\{c\}) - v(\varnothing) = & 3 \\ v(\{a,c\}) - v(\{a\}) = & -1 \\ v(\{b,c\}) - v(\{b\}) = & 1 \\ v(\{a,b,c\}) - v(\{b\}) = & 1 \\ v(\{a,b,c\}) - v(\{a,b\}) = & 2 \end{array}$$

To define the score of c,

BANZHAF (1965) PENROSE (1946) COLEMAN (1971) take the mean of the differences:

$$\pi_c^{\text{Ban}}(v) = \frac{1}{4}3 + \frac{1}{4}(-1) + \frac{1}{4}1 + \frac{1}{4}2 = \frac{5}{4}$$

For player *c*, say, compute the numerical differences when *c* joins:

$$\begin{array}{c|cccc} v(\varnothing) = 0 & v(\{c\}) = 3 \\ v(\{a\}) = 5 & v(\{a,c\}) = 4 \\ v(\{b\}) = 2 & v(\{b,c\}) = 3 \\ v(\{a,b\}) = 6 & v(\{a,b,c\}) = 8 \end{array} \end{array} \begin{array}{c|cccc} v(\{c\}) - v(\varnothing) = & 3 \\ v(\{a,c\}) - v(\{a\}) = & -1 \\ v(\{b,c\}) - v(\{b\}) = & -1 \\ v(\{a,b,c\}) - v(\{b\}) = & 1 \\ v(\{a,b,c\}) - v(\{a,b\}) = & 2 \end{array}$$

To define the score of c,

BANZHAF (1965)  $\frac{\text{PENROSE (1946)}}{\text{COLEMAN (1971)}}$  take the mean of the differences:  $\pi_c^{\text{Ban}}(v) = \frac{1}{4}3 + \frac{1}{4}(-1) + \frac{1}{4}1 + \frac{1}{4}2 = \frac{5}{4}$ 

SHAPLEY (1953) (& SHUBIK, 1954) the mean of the means for fixed sizes:

$$\pi_c^{\text{Sha}}(v) = \frac{1}{3} \left( \frac{1}{1} 3 + \frac{1}{2} (-1 + 1) + \frac{1}{1} 2 \right) = \frac{5}{3}$$

Similar for students *a* and *b*.

(see Banzhaf biography on wikipedia!)

A set function  $v: 2^N \to \mathbb{R}$  is a game when  $v(\emptyset) = 0$ ;

v(S) is the worth of coalition S (see book by GRABISCH, 2016).

A set function  $v: 2^N \to \mathbb{R}$  is a game when  $v(\emptyset) = 0$ ;

v(S) is the worth of coalition S (see book by GRABISCH, 2016).

For any given ν, a (regular) probabilistic scoring π (LUCCHETTI, MORETTI and PATRONE, 2015)

assigns to player *i* in *N* the score

$$\pi_i(\mathbf{v}) = \sum_{\mathbf{S} \in 2^N: i \notin S} p_i(\mathbf{S}) \left( \mathbf{v}(\mathbf{S} \cup \{i\}) - \mathbf{v}(\mathbf{S}) \right)$$

where the  $p_i(S) > 0$ 's are real **parameters**.

A set function  $v: 2^N \to \mathbb{R}$  is a game when  $v(\emptyset) = 0$ ;

v(S) is the worth of coalition S (see book by GRABISCH, 2016).

For any given ν, a (regular) probabilistic scoring π (LUCCHETTI, MORETTI and PATRONE, 2015)

assigns to player *i* in *N* the score

$$\pi_i(\mathbf{v}) = \sum_{\mathbf{S} \in \mathbf{2}^N: i \notin \mathbf{S}} p_i(\mathbf{S}) \left( \mathbf{v}(\mathbf{S} \cup \{i\}) - \mathbf{v}(\mathbf{S}) \right)$$

where the  $p_i(S) > 0$ 's are real **parameters**.

Any probabilistic scoring  $\pi$  is

linear: 
$$\pi_i(\lambda \mathbf{v} + \mu \mathbf{w}) = \lambda \pi_i(\mathbf{v}) + \mu \pi_i(\mathbf{w})$$
  
steady:  $\pi_i(\mathbf{1}) = \pi_j(\mathbf{1})$ 

(for all players *i*, *j* in *N*).

A hierarchy of scorings:



#### What if worths are uncertain?

If we do not know the worths v(A) exactly,

we might nevertheless know how v ranks the coalitions:

$$v(A_1) \ge v(A_2) \ge \ldots \ge v(A_{2^n})$$

Can we then infer how the scores rank the players?

$$\pi_{i_1}(\mathbf{V}) \geq \pi_{i_2}(\mathbf{V}) \geq \ldots \geq \pi_{i_n}(\mathbf{V})$$

#### What if worths are uncertain?

If we do not know the worths v(A) exactly,

we might nevertheless know how v ranks the coalitions:

$$v(A_1) \ge v(A_2) \ge \ldots \ge v(A_{2^n})$$

Can we then infer how the scores rank the players?

$$\pi_{i_1}(\mathbf{v}) \geq \pi_{i_2}(\mathbf{v}) \geq \ldots \geq \pi_{i_n}(\mathbf{v})$$

When does

the player ranking (based on the scores  $\pi_i(v)$ ) only depend on the coalition ranking (based on the worths v(A))?

#### What if worths are uncertain?

If we do not know the worths v(A) exactly,

we might nevertheless know how v ranks the coalitions:

$$v(A_1) \ge v(A_2) \ge \ldots \ge v(A_{2^n})$$

Can we then infer how the scores rank the players?

$$\pi_{i_1}(\mathbf{v}) \geq \pi_{i_2}(\mathbf{v}) \geq \ldots \geq \pi_{i_n}(\mathbf{v})$$

When does

the player ranking (based on the scores  $\pi_i(v)$ ) only depend on the coalition ranking (based on the worths v(A))?

Given v and  $\pi$ , there can arise unstability or stability.

(ranking = weak order = total preorder)

Two set functions v and w on  $N = \{a, b, c\}$ :

| coalitions S  | N | { <i>a</i> , <i>b</i> } | { <i>a</i> , <i>c</i> } | $\{b, c\}$ | { <b>C</b> } | { <b>b</b> } | { <b>a</b> } | Ø |
|---------------|---|-------------------------|-------------------------|------------|--------------|--------------|--------------|---|
| worths $v(S)$ | 9 | 8                       | 6                       | 4          | 3            | 2            | 1            | 0 |
| worths $w(S)$ |   |                         |                         |            |              |              |              |   |

#### The Banzhaf scores are

| р      | layers <i>i</i>                    | а    | b    | С    |
|--------|------------------------------------|------|------|------|
| scores | $\pi^{Ban}_i(\mathbf{V})$          | 15/4 | 14/4 | 11/4 |
| scores | $\pi^{Ban}_i(\mathbf{\textit{w}})$ | 11/4 | 13/4 | 15/4 |

Note that *v* and *w* rank the coalitions in the same way, but the Banzhaf scores are in <u>reversed</u> order.

Two set functions  $v, w : 2^N \to \mathbb{R}$  are **ordinally equivalent** when they rank the coalitions in the same way: for all *S*, *T* in  $2^N$ ,

 $v(S) \ge v(T) \iff w(S) \ge w(T)$ 

Two set functions  $v, w : 2^N \to \mathbb{R}$  are **ordinally equivalent** when they rank the coalitions in the same way: for all *S*, *T* in  $2^N$ ,

 $v(S) \ge v(T) \iff w(S) \ge w(T)$ 

When is the ranking of players by their  $\pi$ -scores the same for all set functions ordinally equivalent to v?

Two set functions  $v, w: 2^N \to \mathbb{R}$  are **ordinally equivalent** when they rank the coalitions in the same way: for all *S*, *T* in  $2^N$ ,

 $v(S) \ge v(T) \iff w(S) \ge w(T)$ 

When is the ranking of players by their  $\pi$ -scores the same for all set functions ordinally equivalent to v?

#### Exercise

Let  $\pi$  be any linear and steady scoring.

For any **bivalued** set function v and any players *i*, *j*, **stability** holds:

$$\pi_i(\mathbf{v}) \leq \pi_j(\mathbf{v})$$

for all set functions u ordinally equivalent to v

 $\pi_i(u) \leq \pi_j(u)$ 

For the rest of the talk, let  $v : 2^N \to \mathbb{R}$  be a set function, *i* and *j* be two players in *N*.



For the rest of the talk, let  $v: 2^N \to \mathbb{R}$  be a set function. *i* and *j* be two players in *N*.  $v_A(S) = \begin{cases} 1 & \text{if } v(A) \leq v(S), \\ 0 & \text{otherwise.} \end{cases}$ For any coalition A, set v(A)sorted v(S)'s  $\mathbb{R}$ 0 We thus specify  $2^{|N|}$  binary set functions  $v_A$ .

## Theorem

Assuming the scoring  $\pi$  on N is steady and linear:

for all set functions *u* ordinally equivalent to *v*:  $\pi_i(u) \leq \pi_i(u)$ 

For the rest of the talk, let  $v: 2^N \to \mathbb{R}$  be a set function. i and j be two players in N.  $v_{\mathcal{A}}(S) = \begin{cases} 1 & \text{if } v(\mathcal{A}) \leq v(S), \\ 0 & \text{otherwise.} \end{cases}$ For any coalition A, set v(A)sorted v(S)'s  $\mathbb{R}$ 0 We thus specify  $2^{|N|}$  binary set functions  $v_A$ .

## Theorem

Assuming the scoring  $\pi$  on N is steady and linear:

for all set functions *u* ordinally equivalent to *v*:  $\pi_i(u) \leq \pi_j(u)$ 

for all coalitions A in  $2^N$ :  $\pi_i(v_A) \leq \pi_j(v_A)$ .

# Theorem

Consider  $v: 2^N \to \mathbb{R}$ , two players *i*, *j*, and the Banzhaf scoring. Then:

for all set functions *u* ordinally equivalent to *v*:  $\pi_i^{\text{Ban}}(u) \leq \pi_i^{\text{Ban}}(u)$ 

#### Theorem

Consider  $v: 2^N \to \mathbb{R}$ , two players *i*, *j*, and the Banzhaf scoring. Then: for all set functions *u* ordinally equivalent to *v*:  $\pi_i^{\text{Ban}}(u) \leq \pi_i^{\text{Ban}}(u)$ for  $S \in 2^{N \setminus \{i,j\}}$ , sort the numbers  $v(S \cup \{i\})$ , and the numbers  $v(S \cup \{j\})$ ; for each  $k = 1, 2, \dots, 2^{n-2}$ : the *k*-th smallest number  $v(S \cup \{i\})$ is less or equal than the *k*-th smallest number  $v(S \cup \{j\})$ .



An extension of previous theorem

from Banzhaf scorings to semivalues:

# Theorem

Let  $\pi$  be a semivalue with parameter vector q.

Assume  $\pi_i(v) \leqslant \pi_j(v)$  for  $v: 2^N \to \mathbb{R}$ , and two players i, j.

Then

for all set functions *u* ordinally equivalent to *v*:  $\pi_i(u) \leq \pi_j(u)$ 

 $\Leftrightarrow$ 

An extension of previous theorem

from Banzhaf scorings to semivalues:

## Theorem

Let  $\pi$  be a semivalue with parameter vector q. Assume  $\pi_i(v) \leq \pi_j(v)$  for  $v : 2^N \to \mathbb{R}$ , and two players i, j. Then

for all set functions *u* ordinally equivalent to *v*:  $\pi_i(u) \leq \pi_j(u)$ 

$$\iff \forall \boldsymbol{S} \in 2^{\boldsymbol{N} \setminus \{i,j\}} : \quad \mathbf{0} \leqslant D_{i,j}^{\pi^{(q)}}(\boldsymbol{v}, \boldsymbol{S})$$

Here  $D_{i,j}^{\pi^{(q)}}(v, S_0)$  is some quantity involving the parameters q(k) of the semivalue  $\pi$ (see paper or additional slide).

(a) Design "efficient" algorithms, with size of data being  $2^{|N|}$  (ignoring encoding of reals).

(a) Design "efficient" algorithms, with size of data being  $2^{|N|}$  (ignoring encoding of reals).

(b) Replace  $v : 2^N \to \mathbb{R}$  with  $v : S \to \mathbb{R}$ , where  $S \subseteq 2^N$ . Consult for instance (and its references) BILBAO, JIMÉNEZ-LOSADA and ORDÓNEZ (2019).

(a) Design "efficient" algorithms, with size of data being  $2^{|N|}$  (ignoring encoding of reals).

(b) Replace  $v : 2^N \to \mathbb{R}$  with  $v : S \to \mathbb{R}$ , where  $S \subseteq 2^N$ . Consult for instance (and its references) BILBAO, JIMÉNEZ-LOSADA and ORDÓNEZ (2019).

(c) Extension to "stochastic games"? Here v(S) becomes a random variable, see for instance DINAR, MORETTI, PATRONE and ZARA (2006).

(a) Design "efficient" algorithms, with size of data being  $2^{|N|}$  (ignoring encoding of reals).

(b) Replace  $v : 2^N \to \mathbb{R}$  with  $v : S \to \mathbb{R}$ , where  $S \subseteq 2^N$ . Consult for instance (and its references) BILBAO, JIMÉNEZ-LOSADA and ORDÓNEZ (2019).

(c) Extension to "stochastic games"? Here v(S) becomes a random variable, see for instance DINAR, MORETTI, PATRONE and ZARA (2006).

Any nonempty coalitions of the above problems.

Thanks for your attention.

# **Definition of** $D_{i,j}^{\pi^{(q)}}(v, S)$

For the given semivalue with parameters q(k), set q'(k) = q(k) + q(k+1).

For any S in  $2^{N \setminus \{i,j\}}$ , define successively

$$\begin{aligned} \mathcal{T}_{i,j}^{+} &= \{ T \in 2^{N \setminus \{i,j\}} \mid v(T \cup \{i\}) \leq v(S \cup \{j\}) \leq v(T \cup \{j\}) \}, \\ \mathcal{T}_{i,j}^{-} &= \{ U \in 2^{N \setminus \{i,j\}} \mid v(U \cup \{j\}) \leq v(S \cup \{j\}) v(U \cup \{i\}) \}, \\ \mathcal{D}_{i,j}^{\pi^{(q)}}(v, S) &= \sum_{T \in \mathcal{T}_{i,i}^{+}} q'(|T|) - \sum_{U \in \mathcal{T}_{i,i}^{-}} q'(|U|). \end{aligned}$$

The quantity  $D_{i,j}^{\pi^{(q)}}(u, S)$  takes the same value for all set functions *u* ordinally equivalent to *v*.