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Example
Marks for the joint homeworks of three students a, b and c :

∅ ÞÑ 0 tcu ÞÑ 3

tau ÞÑ 5 ta, cu ÞÑ 4

tbu ÞÑ 2 tb, cu ÞÑ 3

ta,bu ÞÑ 6 ta,b, cu ÞÑ 8

How to assign individual notes? What if marks are uncertain?

Given a worth for each coalition of economic players,

Ź how to define player scores? (many proposals known);

Ź what if the coalitions worths are uncertain?
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Example
For player c, say, compute the numerical differences when c joins:

vp∅q “ 0 vptcuq “ 3 vptcuq ´ vp∅q “ 3
vptauq “ 5 vpta, cuq “ 4 vpta, cuq ´ vptauq “ ´1
vptbuq “ 2 vptb, cuq “ 3 vptb, cuq ´ vptbuq “ 1

vpta,buq “ 6 vpta,b, cuq “ 8 vpta,b, cuq ´ vpta,buq “ 2

To define the score of c,

BANZHAF (1965) PENROSE (1946)
COLEMAN (1971)

take the mean of the differences:

πBan
c pvq “

1
4

3 `
1
4
p´1q `

1
4

1 `
1
4

2 “
5
4

SHAPLEY (1953) (& SHUBIK, 1954) the mean of the means for fixed sizes:

πSha
c pvq “

1
3

ˆ

1
1

3 `
1
2
p´1 ` 1q `

1
1

2
˙

“
5
3

Similar for students a and b. (see Banzhaf biography on wikipedia!)
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Definition
A set function v : 2N Ñ R is a game when vp∅q “ 0;

vpSq is the worth of coalition S (see book by GRABISCH, 2016).

For any given v , a (regular) probabilistic scoring π

(LUCCHETTI, MORETTI and PATRONE, 2015)

assigns to player i in N the score

πipvq “
ÿ

SP2N : iRS

pipSq
´

vpS Y tiuq ´ vpSq
¯

where the pipSq ą 0’s are real parameters.

Any probabilistic scoring π is

linear: πipλ v ` µwq “ λπipvq ` µπipwq

steady: πip1q “ πjp1q
(for all players i , j in N).
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A hierarchy of scorings:

scorings which are linear and steady

probabilistic scorings pipSq
πipvq “

ř

SP2N ,iRS
pipSq

`

vpS Y tiuq ´ vpSq
˘

semivalues qp|S|q

Banzhaf scoring1
2n´1

Shapley scoring
1

n
`n´1
|S|

˘
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What if worths are uncertain?

If we do not know the worths vpAq exactly,

we might nevertheless know how v ranks the coalitions:

vpA1q ě vpA2q ě . . . ě vpA2nq

Can we then infer how the scores rank the players?

πi1pvq ě πi2pvq ě . . . ě πinpvq

When does

the player ranking (based on the scores πipvq )

only depend on

the coalition ranking (based on the worths vpAq )?

Given v and π, there can arise unstability or stability.

(ranking = weak order = total preorder)
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Example
Two set functions v and w on N “ ta,b, cu:

coalitions S N ta,bu ta, cu tb, cu tcu tbu tau ∅

worths vpSq 9 8 6 4 3 2 1 0

worths wpSq 9 8 7 6 5 3 1 0

The Banzhaf scores are

players i a b c

scores πBan
i pvq 15{4 14{4 11{4

scores πBan
i pwq 11{4 13{4 15{4

Note that v and w rank the coalitions in the same way,
but the Banzhaf scores are in reversed order.
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Definition
Two set functions v , w : 2N Ñ R are ordinally equivalent when
they rank the coalitions in the same way: for all S, T in 2N ,

vpSq ě vpT q ðñ wpSq ě wpT q

When is the ranking of players by their π-scores
the same for all set functions ordinally equivalent to v?

Exercise
Let π be any linear and steady scoring.

For any bivalued set function v and any players i , j , stability holds:

πipvq ď πjpvq

ðñ

for all set functions u ordinally equivalent to v

πipuq ď πjpuq
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For the rest of the talk, let
v : 2N Ñ R be a set function,
i and j be two players in N.

For any coalition A, set vApSq “

#

1 if vpAq ď vpSq,
0 otherwise.

sorted vpSq’s R
vpAq

0 0 1 1 1 1

We thus specify 2|N| binary set functions vA.

Theorem

Assuming the scoring π on N is steady and linear:

for all set functions u ordinally equivalent to v : πipuq ď πjpuq

ðñ

for all coalitions A in 2N : πipvAq ď πjpvAq.
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Theorem

Consider v : 2N Ñ R, two players i , j , and the Banzhaf scoring. Then:

for all set functions u ordinally equivalent to v : πBan
i puq ď πBan

j puq

ðñ

for S P 2Nzti,ju, sort the numbers vpS Y tiuq, and the numbers vpS Y tjuq;

for each k “ 1, 2, . . . , 2n´2:

the k -th smallest number vpS Y tiuq

is less or equal than

the k -th smallest number vpS Y tjuq.

sorted vpS Y tiuq’s R

sorted vpS Y tjuq’s R
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An extension of previous theorem

from Banzhaf scorings to semivalues:

Theorem
Let π be a semivalue with parameter vector q.

Assume πipvq ď πjpvq for v : 2N Ñ R, and two players i , j .

Then

for all set functions u ordinally equivalent to v : πipuq ď πjpuq

ðñ

@S P 2Nzti,ju : 0 ď Dπpqq

i,j pv ,Sq.

Here Dπpqq

i,j pv ,S0q is some quantity involving

the parameters qpkq of the semivalue π

(see paper or additional slide).
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Future Work

(a) Design “efficient” algorithms,
with size of data being 2|N| (ignoring encoding of reals).

(b) Replace v : 2N Ñ R with v : S Ñ R, where S Ď 2N .
Consult for instance (and its references)

BILBAO, JIMÉNEZ-LOSADA and ORDÓNEZ (2019).

(c) Extension to “stochastic games”?
Here vpSq becomes a random variable, see for instance

DINAR, MORETTI, PATRONE and ZARA (2006).

§ Any nonempty coalitions of the above problems.

12



Future Work

(a) Design “efficient” algorithms,
with size of data being 2|N| (ignoring encoding of reals).

(b) Replace v : 2N Ñ R with v : S Ñ R, where S Ď 2N .
Consult for instance (and its references)

BILBAO, JIMÉNEZ-LOSADA and ORDÓNEZ (2019).

(c) Extension to “stochastic games”?
Here vpSq becomes a random variable, see for instance

DINAR, MORETTI, PATRONE and ZARA (2006).

§ Any nonempty coalitions of the above problems.

12



Future Work

(a) Design “efficient” algorithms,
with size of data being 2|N| (ignoring encoding of reals).

(b) Replace v : 2N Ñ R with v : S Ñ R, where S Ď 2N .
Consult for instance (and its references)

BILBAO, JIMÉNEZ-LOSADA and ORDÓNEZ (2019).

(c) Extension to “stochastic games”?
Here vpSq becomes a random variable, see for instance

DINAR, MORETTI, PATRONE and ZARA (2006).

§ Any nonempty coalitions of the above problems.

12



Future Work

(a) Design “efficient” algorithms,
with size of data being 2|N| (ignoring encoding of reals).

(b) Replace v : 2N Ñ R with v : S Ñ R, where S Ď 2N .
Consult for instance (and its references)

BILBAO, JIMÉNEZ-LOSADA and ORDÓNEZ (2019).

(c) Extension to “stochastic games”?
Here vpSq becomes a random variable, see for instance

DINAR, MORETTI, PATRONE and ZARA (2006).

§ Any nonempty coalitions of the above problems.

12



Thanks for your attention.
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Definition of Dπpqq

i,j pv ,Sq

For the given semivalue with parameters qpkq, set
q1pkq “ qpkq ` qpk ` 1q.

For any S in 2Nzti,ju, define successively

T `i,j “ tT P 2Nzti,ju vpT Y tiuq ď vpS Y tjuq ď vpT Y tjuqu,

T ´i,j “ tU P 2Nzti,ju vpU Y tjuq ď vpS Y tjuqvpU Y tiuqu,

Dπpqq

i,j pv ,Sq “
ÿ

TPT `i,j

q1p|T |q ´
ÿ

UPT ´i,j

q1p|U|q.

The quantity Dπpqq

i,j pu,Sq takes the same value for all set functions u
ordinally equivalent to v .
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