Tackling Uncertainty in Coalitional Games

Jean-Paul Doignon
Université Libre de Bruxelles

Based on the IJCAI(2022) paper with

$$
\begin{gathered}
\text { Meltem Öztürk and Stefano Moretti } \\
\text { Université Paris Dauphine }
\end{gathered}
$$

15th International Conference on Scalable Uncertainty Management (SUM2022) (paper and slides are available)

Supported by French National Research Agency under THEMIS ANR-20-CE23-0018

Example

Marks for the joint homeworks of three students a, b and c :

$$
\begin{aligned}
\varnothing & \mapsto 0 & \{c\} & \mapsto 3 \\
\{a\} & \mapsto 5 & \{a, c\} & \mapsto 4 \\
\{b\} & \mapsto 2 & \{b, c\} & \mapsto 3 \\
\{a, b\} & \mapsto 6 & \{a, b, c\} & \mapsto 8
\end{aligned}
$$

How to assign individual notes?
What if marks are uncertain?

Example

Marks for the joint homework of three students a, b and c :

$$
\begin{aligned}
\varnothing & \mapsto 0 & \{c\} & \mapsto 3 \\
\{a\} & \mapsto 5 & \{a, c\} & \mapsto 4 \\
\{b\} & \mapsto 2 & \{b, c\} & \mapsto 3 \\
\{a, b\} & \mapsto 6 & \{a, b, c\} & \mapsto 8
\end{aligned}
$$

How to assign individual notes?
What if marks are uncertain?

Given a worth for each coalition of economic players,
\triangleright how to define player scores? (many proposals known);
\triangleright what if the coalitions worth are uncertain?

Example

For player c, say, compute the numerical differences when c joins:

$$
\begin{array}{rlrl}
v(\varnothing) & =0 & v(\{c\}) & =3 \\
v(\{a\}) & =5 & v(\{a, c\}) & =4 \\
v(\{b\}) & =2 & v(\{b, c\}) & =3 \\
v(\{a, b\}) & =6 & v(\{a, b, c\}) & =8
\end{array}
$$

$$
\begin{aligned}
v(\{c\})-v(\varnothing)= & 3 \\
v(\{a, c\})-v(\{a\})= & -1 \\
v(\{b, c\})-v(\{b\})= & 1 \\
v(\{a, b, c\})-v(\{a, b\})= & 2
\end{aligned}
$$

To define the score of c,

Example

For player c, say, compute the numerical differences when c joins:

$$
\begin{array}{rl|rl}
v(\varnothing)=0 & v(\{c\}) & =3 & v(\{c\})-v(\varnothing)= \\
v(\{a\})=5 & v(\{a, c\})=4 & v(\{a, c\})-v(\{a\})=-1 \\
v(\{b\})=2 & v(\{b, c\})=3 & v(\{b, c\})-v(\{b\})=r & =3 \\
v(\{a, b\})=6 & v(\{a, b, c\})=8 & v(\{a, b, c\})-v(\{a, b\})=3
\end{array}
$$

To define the score of c,
Banzhaf (1965) $\begin{aligned} & \text { Pentose (1946) } \\ & \text { Coleman (1971) }\end{aligned}$ take the mean of the differences:

$$
\pi_{c}^{\mathrm{Ban}}(v)=\frac{1}{4} 3+\frac{1}{4}(-1)+\frac{1}{4} 1+\frac{1}{4} 2=\frac{5}{4}
$$

Example

For player c, say, compute the numerical differences when c joins:

$$
\begin{array}{rlrl}
v(\varnothing) & =0 & v(\{c\}) & =3 \\
v(\{a\}) & =5 & v(\{a, c\}) & =4 \\
v(\{b\}) & =2 & v(\{b, c\}) & =3 \\
v(\{a, b\}) & =6 & v(\{a, b, c\}) & =8
\end{array}
$$

$$
\begin{aligned}
v(\{c\})-v(\varnothing)= & 3 \\
v(\{a, c\})-v(\{a\})= & -1 \\
v(\{b, c\})-v(\{b\})= & 1 \\
v(\{a, b, c\})-v(\{a, b\})= & 2
\end{aligned}
$$

To define the score of c,
Banzhaf (1965) $\begin{aligned} & \text { Penrose (1946) } \\ & \text { Coleman (1971) }\end{aligned}$ take the mean of the differences:

$$
\pi_{c}^{\mathrm{Ban}}(v)=\frac{1}{4} 3+\frac{1}{4}(-1)+\frac{1}{4} 1+\frac{1}{4} 2=\frac{5}{4}
$$

Shapley (1953) (\& Shubik, 1954) the mean of the means for fixed sizes:

$$
\pi_{c}^{\text {Sha }}(v)=\frac{1}{3}\left(\frac{1}{1} 3+\frac{1}{2}(-1+1)+\frac{1}{1} 2\right)=\frac{5}{3}
$$

Similar for students a and b.

Definition

A set function $\quad v: 2^{N} \rightarrow \mathbb{R}$ is a game when $\quad v(\varnothing)=0$; $v(S)$ is the worth of coalition S (see book by Grabisch, 2016).

Definition

A set function $\quad v: 2^{N} \rightarrow \mathbb{R}$ is a game when $\quad v(\varnothing)=0$;
$v(S)$ is the worth of coalition S (see book by Grabisch, 2016).
For any given v, a (regular) probabilistic scoring π
(Lucchetti, Moretti and Patrone, 2015)
assigns to player i in N the score

$$
\pi_{i}(v)=\sum_{S \in 2^{N}: i \notin S} p_{i}(S)(v(S \cup\{i\})-v(S))
$$

where the $p_{i}(S)>0$'s are real parameters.

Definition

A set function $\quad v: 2^{N} \rightarrow \mathbb{R}$ is a game when $\quad v(\varnothing)=0$;
$v(S)$ is the worth of coalition S (see book by Grabisch, 2016).
For any given v, a (regular) probabilistic scoring π
(Lucchetti, Moretti and Patrone, 2015)
assigns to player i in N the score

$$
\pi_{i}(v)=\sum_{S \in 2^{N}: i \notin S} p_{i}(S)(v(S \cup\{i\})-v(S))
$$

where the $p_{i}(S)>0$'s are real parameters.
Any probabilistic scoring π is
linear: $\quad \pi_{i}(\lambda v+\mu w)=\lambda \pi_{i}(v)+\mu \pi_{i}(\boldsymbol{w})$
steady: $\pi_{i}(\mathbf{1})=\pi_{j}(\mathbf{1})$

A hierarchy of scorings:
scorings which are linear and steady

What if worths are uncertain?

If we do not know the worths $v(A)$ exactly, we might nevertheless know how v ranks the coalitions:

$$
v\left(A_{1}\right) \geqslant v\left(A_{2}\right) \geqslant \ldots \geqslant v\left(A_{2^{n}}\right)
$$

Can we then infer how the scores rank the players?

$$
\pi_{i_{1}}(v) \geqslant \pi_{i_{2}}(v) \geqslant \ldots \geqslant \pi_{i_{n}}(v)
$$

What if worths are uncertain?

If we do not know the worths $v(A)$ exactly, we might nevertheless know how v ranks the coalitions:

$$
v\left(A_{1}\right) \geqslant v\left(A_{2}\right) \geqslant \ldots \geqslant v\left(A_{2^{n}}\right)
$$

Can we then infer how the scores rank the players?

$$
\pi_{i_{1}}(v) \geqslant \pi_{i_{2}}(v) \geqslant \ldots \geqslant \pi_{i_{n}}(v)
$$

When does
the player ranking (based on the scores $\pi_{i}(v)$)
only depend on the coalition ranking (based on the worths $v(A)$)?

What if worths are uncertain?

If we do not know the worths $v(A)$ exactly, we might nevertheless know how v ranks the coalitions:

$$
v\left(A_{1}\right) \geqslant v\left(A_{2}\right) \geqslant \ldots \geqslant v\left(A_{2^{n}}\right)
$$

Can we then infer how the scores rank the players?

$$
\pi_{i_{1}}(v) \geqslant \pi_{i_{2}}(v) \geqslant \ldots \geqslant \pi_{i_{n}}(v)
$$

When does
the player ranking (based on the scores $\pi_{i}(v)$)
only depend on the coalition ranking (based on the worths $v(A)$)?

Given v and π, there can arise unstability or stability.

Example

Two set functions v and w on $N=\{a, b, c\}$:

coalitions		S	N	$\{a, b\}$	$\{a, c\}$	$\{b, c\}$	$\{c\}$	$\{b\}$	$\{a\}$

The Banzhaf scores are

players i		a	b	c
scores	$\pi_{i}^{\operatorname{Ban}}(v)$	$15 / 4$	$14 / 4$	$11 / 4$
scores	$\pi_{i}^{\mathrm{Ban}}(w)$	$11 / 4$	$13 / 4$	$15 / 4$

Note that v and w
rank the coalitions in the same way, but the Banzhaf scores are in reversed order.

Definition

Two set functions $\quad v, w: 2^{N} \rightarrow \mathbb{R}$ are ordinally equivalent when they rank the coalitions in the same way: for all S, T in 2^{N},

$$
v(S) \geqslant v(T) \quad \Longleftrightarrow \quad w(S) \geqslant w(T)
$$

Definition

Two set functions $\quad v, w: 2^{N} \rightarrow \mathbb{R}$ are ordinally equivalent when they rank the coalitions in the same way: for all S, T in 2^{N},

$$
v(S) \geqslant v(T) \quad \Longleftrightarrow \quad w(S) \geqslant w(T)
$$

When is the ranking of players by their π-scores the same for all set functions ordinally equivalent to v ?

Definition

Two set functions $\quad v, w: 2^{N} \rightarrow \mathbb{R}$ are ordinally equivalent when they rank the coalitions in the same way: for all S, T in 2^{N},

$$
v(S) \geqslant v(T) \quad \Longleftrightarrow \quad w(S) \geqslant w(T)
$$

When is the ranking of players by their π-scores the same for all set functions ordinally equivalent to v ?

Exercise
Let π be any linear and steady scoring.
For any bivalued set function v and any players i, j, stability holds:

$$
\pi_{i}(v) \leqslant \pi_{j}(v)
$$

for all set functions u ordinally equivalent to v

$$
\pi_{i}(u) \leqslant \pi_{j}(u)
$$

For the rest of the talk, let
$v: 2^{N} \rightarrow \mathbb{R}$ be a set function,
i and j be two players in N.

For the rest of the talk, let
$v: 2^{N} \rightarrow \mathbb{R}$ be a set function,
i and j be two players in N.
For any coalition A, set $\quad v_{A}(S)= \begin{cases}1 & \text { if } v(A) \leqslant v(S), \\ 0 & \text { otherwise. }\end{cases}$

We thus specify $2^{|N|}$ binary set functions v_{A}.

For the rest of the talk, let
$v: 2^{N} \rightarrow \mathbb{R}$ be a set function, i and j be two players in N.

For any coalition A, set $\quad v_{A}(S)= \begin{cases}1 & \text { if } v(A) \leqslant v(S), \\ 0 & \text { otherwise. }\end{cases}$

We thus specify $2^{|N|}$ binary set functions v_{A}.

Theorem

Assuming the scoring π on N is steady and linear:
for all set functions u ordinally equivalent to $v: \quad \pi_{i}(u) \leqslant \pi_{j}(u)$

For the rest of the talk, let
$v: 2^{N} \rightarrow \mathbb{R}$ be a set function, i and j be two players in N.

For any coalition A, set $\quad v_{A}(S)= \begin{cases}1 & \text { if } v(A) \leqslant v(S), \\ 0 & \text { otherwise. }\end{cases}$

We thus specify $2^{|N|}$ binary set functions v_{A}.

Theorem

Assuming the scoring π on N is steady and linear:
for all set functions u ordinally equivalent to $v: \quad \pi_{i}(u) \leqslant \pi_{j}(u)$

for all coalitions A in $2^{N}: \quad \pi_{i}\left(V_{A}\right) \leqslant \pi_{j}\left(V_{A}\right)$.

Theorem

Consider $v: 2^{N} \rightarrow \mathbb{R}$, two players i, j, and the Banzhaf scoring. Then: for all set functions u ordinally equivalent to v : $\quad \pi_{i}^{\text {Ban }}(u) \leqslant \pi_{j}^{\text {Ban }}(u)$

Theorem

Consider $v: 2^{N} \rightarrow \mathbb{R}$, two players i, j, and the Banzhaf scoring. Then:
for all set functions u ordinally equivalent to $v: \quad \pi_{i}^{\mathrm{Ban}}(\boldsymbol{u}) \leqslant \pi_{j}^{\mathrm{Ban}}(\boldsymbol{u})$
for $S \in 2^{M\{i, j\}}$, sort the numbers $v(S \cup\{i\})$, and the numbers $v(S \cup\{j\})$; for each $k=1,2, \ldots, 2^{n-2}$:
the k-th smallest number $v(S \cup\{i\})$
is less or equal than
the k-th smallest number $v(S \cup\{j\})$.
sorted $v(S \cup\{i\})$'s
sorted $v(S \cup\{j\})$'s

An extension of previous theorem from Banzhaf scorings to semivalues:

Theorem

Let π be a semivalue with parameter vector q.
Assume $\pi_{i}(v) \leqslant \pi_{j}(v)$ for $v: 2^{N} \rightarrow \mathbb{R}$, and two players i, j.
Then
for all set functions u ordinally equivalent to $v: \quad \pi_{i}(u) \leqslant \pi_{j}(u)$

An extension of previous theorem from Banzhaf scorings to semivalues:

Theorem

Let π be a semivalue with parameter vector q.
Assume $\pi_{i}(v) \leqslant \pi_{j}(v)$ for $v: 2^{N} \rightarrow \mathbb{R}$, and two players i, j.
Then
for all set functions u ordinally equivalent to $v: \quad \pi_{i}(u) \leqslant \pi_{j}(u)$

$$
\forall S \in 2^{M\{\{i, j\}}: \quad 0 \leqslant D_{i, j}^{\pi(q)}(v, S) .
$$

Here $D_{i, j}^{\pi^{(q)}}\left(v, S_{0}\right)$ is some quantity involving the parameters $q(k)$ of the semivalue π
(see paper or additional slide).

Future Work

(a) Design "efficient" algorithms,
with size of data being $2^{|N|}$ (ignoring encoding of reals).

Future Work

(a) Design "efficient" algorithms, with size of data being $2^{|N|}$ (ignoring encoding of reals).
(b) Replace $v: 2^{N} \rightarrow \mathbb{R}$ with $\quad v: \mathcal{S} \rightarrow \mathbb{R}$, where $\mathcal{S} \subseteq 2^{N}$. Consult for instance (and its references)

Bilbao, Jiménez-Losada and Ordónez (2019).

Future Work

(a) Design "efficient" algorithms, with size of data being $2^{|N|}$ (ignoring encoding of reals).
(b) Replace $v: 2^{N} \rightarrow \mathbb{R}$ with $\quad v: \mathcal{S} \rightarrow \mathbb{R}$, where $\mathcal{S} \subseteq 2^{N}$. Consult for instance (and its references) Bilbao, Jiménez-Losada and Ordónez (2019).
(c) Extension to "stochastic games"?

Here $v(S)$ becomes a random variable, see for instance Dinar, Moretti, Patrone and Zara (2006).

Future Work

(a) Design "efficient" algorithms, with size of data being $2^{|N|}$ (ignoring encoding of reals).
(b) Replace $v: 2^{N} \rightarrow \mathbb{R}$ with $v: \mathcal{S} \rightarrow \mathbb{R}$, where $\mathcal{S} \subseteq 2^{N}$. Consult for instance (and its references) Bilbao, Jiménez-Losada and Ordónez (2019).
(c) Extension to "stochastic games"? Here $v(S)$ becomes a random variable, see for instance Dinar, Moretti, Patrone and Zara (2006).

- Any nonempty coalitions of the above problems.

Thanks for your attention.

Definition of $\quad D_{i, j}^{\pi(q)}(v, S)$

For the given semivalue with parameters $q(k)$, set

$$
q^{\prime}(k)=q(k)+q(k+1) .
$$

For any S in $2^{M\{i, j\}}$, define successively

$$
\begin{aligned}
& \mathcal{T}_{i, j}^{+}=\left\{T \in 2^{M\{i, j\}} \mid v(T \cup\{i\}) \leqslant v(S \cup\{j\}) \leqslant v(T \cup\{j\})\right\}, \\
& \mathcal{T}_{i, j}^{-}=\left\{U \in 2^{M\{i, j\}} \mid v(U \cup\{j\}) \leqslant v(S \cup\{j\}) v(U \cup\{i\})\right\}, \\
& D_{i, j}^{\pi(q)}(v, S)=\sum_{T \in \mathcal{T}_{i, j}^{+}} q^{\prime}(|T|)-\sum_{U \in \mathcal{T}_{i, j}^{-}} q^{\prime}(|U|) .
\end{aligned}
$$

The quantity $D_{i, j}^{\pi^{(q)}}(u, S)$ takes the same value for all set functions u ordinally equivalent to v.

