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Motivation

Two sources of uncertainty
Incomplete information
Inconsistency

Classical logic deals with incomplete information:
Given a consistent knowledge base, a proposition is known to be
true, known to be false, or unknown.
These epistemic statuses can be captured
- in modal logic (□p, □¬p, ¬□p ∧ ¬□¬p)
- possibility theory (N(p) = 1,N(¬p) = 1,N(p) = N(¬p) = 0).

But classical logic cannot deal with inconsistency non-trivially:
what can be an inconsistent-tolerant semantics?
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Motivation

In the presence of inconsistency
The usual model-based semantic inference collapses: you cannot
evaluate inconsistent knowledge bases on interpretations since
Mod(K ) = ∅

The way out: Extend the epistemic semantics of classical logic:

Evaluate formulas on epistemic states E ⊆ I (non-empty subset
of interpretations)
p is known to be true in E iff E ⊆ Mod(p), i.e., NE(p) = 1
This semantics is equivalent to the one of classical logic.

In the case of inconsistency, move to more general set functions
beyond necessity measures
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From necessity measures to capacities

Boolean necessity measures

If the epistemic state E : N(p) = 1 if E ⊆ Mod(p), and 0 otherwise.
N(A ∩ B) = min(N(A),N(B))

If E = Mod(K ), then Cons(K ) = {p : N(Mod(p)) = 1}.

Boolean capacities

A set function g : 2I → {0,1} monotonic with inclusion.
The family {A : g(A) = 1} has minimal elements Fg forming an
antichain of focal sets that determine g.
g(A) = 1 iff ∃E ∈ Fg : E ⊆ A.
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A simple inconsistency-tolerant inference: |=eit

Idea
inconsistency derives from the presence of conflicting sources of
information

K |=eit p ⇐⇒ ∃pi ∈ K ,pi consistent, such that pi |= p.

Each consistent formula is supposed to come from a specific
source of information: inconsistent sources ruled out.
We do not allow for fusion of information from distinct sources:
we only collect the available pieces of information (in the spirit of
Belnap).
Logical consequences Ceit(K ) =

⋃
pi∈K CPrL({pi})
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A simple inconsistency-tolerant inference:|=eit

Given an inconsistency-tolerant inference relation ⊢I , is there a
capacity g such that K ⊢ p if and only if g(Mod(p)) = 1?

Capacity associated to K under |=eit : gK = maxpi∈K Ni ,

Remarks
Focal sets: FK = {[pi ] : pi ∈ K , ∄q ∈ K ,q |= pi}.
K |=eit p ⇐⇒ gK ([p]) = 1.
If K is consistent the eit inference is weaker than classical
inference.
Modus Ponens is not a valid inference rule
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Strengthening |=eit

We can refine the capacity gK into gK∃ asking that

∀C ⊆ K consistent, gK∃([∧pi∈Cpi ]) = min
pi∈C

gK∃(Mod(pi)) = 1

Inference: K |=∃ p ⇐⇒ gK∃([p]) = 1 ⇐⇒ {q1, . . . ,qk} |=eit p

Remarks
Disjoint focal sets: conjunctions qk of formulas in the maximal
consistent subsets MCk , k = 1, . . . ,m.
We cross-fertilize the pieces of information in K
If K is consistent this inference comes down to classical inference.
This is the existential (or weak) consequence of Rescher and
Manor (1970) |=∃ based on maximal consistent subsets.
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The 4 epistemic statuses of a proposition

The status of a proposition p wrt the inconsistent knowledge base K ,
using the eit-inference can be defined: p is

supported if K |=eit p and K ̸|=eit ¬p;
rejected if K |=eit ¬p and K ̸|=eit p;
unknown if p is neither supported nor rejected, i.e., K ̸|=eit p and
K ̸|=eit ¬p;
conflicting if p is both supported and rejected, i.e., K |=eit p and
K |=eit ¬p.

The four epistemic statuses can be expressed by means of gK , letting
A = [p]:

Support: gK (A) = 1 and gK (Ac) = 0. Rejection: gK (Ac) = 1 and
gK (A) = 0.
Ignorance: gK (A)= gK (Ac)=0. Conflict: gK (A) = gK (Ac) = 1.
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Relations with Belnap logic

The four pairs (gK (A),gK (Ac)) = {(0,0), (1,0), (0,1), (1,1)} encode
the 4 Belnap epistemic truth-values (NONE,TRUE, FALSE, BOTH) and
form a bilattice.

Belnap setting and logic

Sources i express their knowledge about atomic propositions
a ∈ V : ti(a) = 1,0 or unknown
Ti = {a ∈ V : ti(a) = 1}, Fi = {a ∈ V : ti(a) = 0}.
define KB = {p1, . . .pn} where pi = (

∧
a∈Ti

a) ∧ (
∧

b∈Fi
¬b).
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Relations with Belnap logic

The Belnap epistemic statuses of each atomic proposition can be
retrieved using inference |=eit . p is

TRUE if KB |=eit p and KB ̸|=eit ¬p;
FALSE if KB |=eit ¬p and KB ̸|=eit p;
NONE if p is neither supported nor rejected, i.e., KB ̸|=eit p and
KB ̸|=eit ¬p;
BOTH if p is both supported and rejected, i.e., KB |=eit p and
KB |=eit ¬p.

The epistemic statuses of composite propositions can be obtained
by truth tables.
Belnap logic can be captured by an elementary modal logic with
capacity semantics (Ciucci and Dubois, IJAR, 2019).
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Other inconsistency-tolerant logics with capacity
semantics

Priest logic of Paradox
Belnap logic without truth-value NONE
need capacities such that max(g(A),g(Ac)) = 1, typically possibility
measures.

Argumentative inference:
p follows from K if p follows classically from a consistent subset of
K but its negation does not.
K ⊢A p if and only if K ⊢∃ p and K ̸⊢∃ ¬p (using Rescher and
Manor existential inference).
So K ⊢A p if and only if g(Mod(p)) = 1 and g(Mod(¬p)) = 0
(Belnap TRUE).
It is not truth-functional.
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Conclusion

We have proposed a capacity-based semantics to reasoning
under inconsistency
capacity semantics cover a number of old approaches
Other approaches could perhaps be covered: quasi-classical and
other paraconsistent logics.
towards a unified semantic view of inconsistency-tolerant
inference
potential bridge to valued uncertainty theories and logic
(probability and beyond)
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