On Incompleteness in Abstract Argumentation: Complexity and Expressiveness

Jean-Guy Mailly

LIPADE

15th International Conference on Scalable Uncertainty Management (SUM 2022)
19 Oct. 2022

Outline

(1) Background: Abstract Argumentation
(2) Incomplete AFs

- Definitions and Complexity
- The Disjunction Problem
(3) Rich Incomplete AFs

4 Constrained Incomplete AFs

- Definition
- Expressiveness of CIAFs
- CIAFs and Extension Enforcement
(5) Conclusion

Why Argumentation?

a_{1} "I'm hungry, let's go to this restaurant." (John)
a_{2} "The comments on Tripadvisor are bad, let's go somewhere else." (Yoko)
a_{3} "These are old comments, and there is a new chef, so the food is probably better now." (John)
a_{4} "Moreover, all the other restaurants in this street are closed." (John)

Why Argumentation?

a_{1} "I'm hungry, let's go to this restaurant." (John)
a_{2} "The comments on Tripadvisor are bad, let's go somewhere else." (Yoko)
a_{3} "These are old comments, and there is a new chef, so the food is probably better now." (John)
a_{4} "Moreover, all the other restaurants in this street are closed." (John)

Argumentation is useful when agents need to communicate about their (possibly incompatible) beliefs, goals, preferences,...

- strategic aspects: persuasion, negotiation,...

More generally, argumentation can be used to represent conflicting information and obtain reasonable outcome from it

Abstract AFs

Dung's Argumentation Framework

Argumentation Framework (AF for short): $F=\langle A, R\rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example: $F=\langle A, R\rangle$ with
- $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$
- $R=\left\{\left(a_{2}, a_{1}\right),\left(a_{3}, a_{2}\right),\left(a_{4}, a_{2}\right)\right\}$

Phan Minh Dung: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. Intell. 77(2): 321-358 (1995)

Abstract AFs

Dung's Argumentation Framework

Argumentation Framework (AF for short): $F=\langle A, R\rangle$ where

- A is a set of arguments
- $R \subseteq A \times A$ represents attacks between arguments
- Example: $F=\langle A, R\rangle$ with
- $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$
- $R=\left\{\left(a_{2}, a_{1}\right),\left(a_{3}, a_{2}\right),\left(a_{4}, a_{2}\right)\right\}$
- Collective arguments acceptability

Phan Minh Dung: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. Intell. 77(2): 321-358 (1995)

Dung's Semantics

Basic properties

Given $F=\langle A, R\rangle, S \subseteq A$ is

- conflict-free (cf) w.r.t. F if $\nexists a_{i}, a_{j} \in S$ s.t. $\left(a_{i}, a_{j}\right) \in R$
- admissible (ad) w.r.t. F if S is cf and defends each $a_{i} \in S$

Classical semantics

Given $F=\langle A, R\rangle, S \subseteq A$ is

- complete (co) w.r.t. F if S is ad and contains all the arguments that it defends
- preferred (pr) w.r.t. F if S is a \subseteq-maximal co extension
- stable (st) w.r.t. F if S is cf and attacks every $a_{j} \in A \backslash E$
- grounded (gr) w.r.t. F if S is a \subseteq-minimal co extension

Phan Minh Dung: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. Intell. 77(2): 321-358 (1995)

Semantics Example

Semantics	Extensions
Grounded	$\{\emptyset\}$
Stable	$\left\{\left\{a_{2}\right\}\right\}$
Preferred	$\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$
Complete	$\left\{\emptyset,\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$

Semantics Example

Semantics	Extensions
Grounded	$\{\emptyset\}$
Stable	$\left\{\left\{a_{2}\right\}\right\}$
Preferred	$\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$
Complete	$\left\{\emptyset,\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$

Semantics Example

Semantics	Extensions
Grounded	$\{\emptyset\}$
Stable	$\left\{\left\{a_{2}\right\}\right\}$
Preferred	$\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$
Complete	$\left\{\emptyset,\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$

Semantics Example

Semantics	Extensions
Grounded	$\{\emptyset\}$
Stable	$\left\{\left\{a_{2}\right\}\right\}$
Preferred	$\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$
Complete	$\left\{\emptyset,\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$

Semantics Example

Semantics	Extensions
Grounded	$\{\emptyset\}$
Stable	$\left\{\left\{a_{2}\right\}\right\}$
Preferred	$\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$
Complete	$\left\{\emptyset,\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$

Semantics Example

Semantics	Extensions
Grounded	$\{\emptyset\}$
Stable	$\left\{\left\{a_{2}\right\}\right\}$
Preferred	$\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$
Complete	$\left\{\emptyset,\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$

Semantics Example

Semantics	Extensions
Grounded	$\{\emptyset\}$
Stable	$\left\{\left\{a_{2}\right\}\right\}$
Preferred	$\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$
Complete	$\left\{\emptyset,\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$

Semantics Example

Semantics	Extensions
Grounded	$\{\emptyset\}$
Stable	$\left\{\left\{a_{2}\right\}\right\}$
Preferred	$\left\{\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$
Complete	$\left\{\emptyset,\left\{a_{1}\right\},\left\{a_{2}\right\}\right\}$

Arguments Acceptability

Given $F=\langle A, R\rangle$ and σ a semantics,

- $a \in A$ is skeptically accepted (SA) by F w.r.t. σ iff $\forall S \in \sigma(F)$, $a \in S$
- $a \in A$ is credulously accepted (CA) by F w.r.t. σ iff $\exists S \in \sigma(F)$, s.t. $a \in S$

σ	$\sigma-\mathrm{CA}$	$\sigma-\mathrm{SA}$
ad	NP-c	trivial
st	NP-c	coNP-c
$\mathbf{c o}$	NP-c	$\mathrm{P}-\mathrm{c}$
$\mathbf{g r}$	$\mathrm{P}-\mathrm{c}$	$\mathrm{P}-\mathrm{c}$
$\mathbf{p r}$	NP-c	$\Pi_{2}^{P}-\mathrm{c}$

Outline

(2) Background: Abstract Argumentation
(2) Incomplete AFs

- Definitions and Complexity
- The Disjunction Problem
(3) Rich Incomplete AFs

4 Constrained Incomplete AFs

- Definition
- Expressiveness of CIAFs
- CIAFs and Extension Enforcement
(5) Conclusion

Incomplete AFs

Incomplete Argumentation Framework

Incomplete Argumentation Framework (IAF for short): $I=\left\langle A, A^{?}, R, R^{?}\right\rangle$ where

- A and R are arguments and attacks that certainly exist
- $A^{\text {? }}$ and $R^{\text {? }}$ are arguments and attacks that may exist, by maybe not

Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niskanen, Jörg Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

Incomplete AFs

Incomplete Argumentation Framework

Incomplete Argumentation Framework (IAF for short): $I=\left\langle A, A^{?}, R, R^{?}\right\rangle$ where

- A and R are arguments and attacks that certainly exist
- $A^{\text {? }}$ and $R^{\text {? }}$ are arguments and attacks that may exist, by maybe not

Why incompleteness?

- ignorance about other agents knowledge/preferences in a debate
- ignorance about the truth of arguments premises

Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niskanen, Jörg Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

Completions

Completion of an IAF $I=\left\langle A, A^{?}, R, R^{?}\right\rangle: F=\left\langle A^{*}, R^{*}\right\rangle$ where

- $A \subseteq A^{*} \subseteq A \cup A^{\text {? }}$
- $R \cap\left(A^{*} \times A^{*}\right) \subseteq R^{*} \subseteq\left(R \cup R^{?}\right) \cap\left(A^{*} \times A^{*}\right)$
\rightarrow "classical" AF compatible with the uncertain knowledge contained in the IAF

Completions

Completion of an IAF $I=\left\langle A, A^{?}, R, R^{?}\right\rangle: F=\left\langle A^{*}, R^{*}\right\rangle$ where

- $A \subseteq A^{*} \subseteq A \cup A^{\text {? }}$
- $R \cap\left(A^{*} \times A^{*}\right) \subseteq R^{*} \subseteq\left(R \cup R^{?}\right) \cap\left(A^{*} \times A^{*}\right)$
\rightarrow "classical" AF compatible with the uncertain knowledge contained in the IAF

Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niskanen, Jörg Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

Classical Reasoning with IAFs

- Possible view: the property is true in some completion
- Necessary view: the property is true in each completion

Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niskanen, Jörg Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

Classical Reasoning with IAFs

- Possible view: the property is true in some completion
- Necessary view: the property is true in each completion

- a_{3} is skeptically accepted in each completion

Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niskanen, Jörg Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

Classical Reasoning with IAFs

- Possible view: the property is true in some completion
- Necessary view: the property is true in each completion

- a_{3} is skeptically accepted in each completion
- a_{4} is skeptically accepted in some completion

Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niskanen, Jörg Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

Classical Reasoning with IAFs

- Possible view: the property is true in some completion
- Necessary view: the property is true in each completion

- a_{3} is skeptically accepted in each completion
- a_{4} is skeptically accepted in some completion
- a_{2} is credulously accepted in some completion

Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niskanen, Jörg Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

Classical Reasoning with IAFs

- Possible view: the property is true in some completion
- Necessary view: the property is true in each completion

- a_{3} is skeptically accepted in each completion
- a_{4} is skeptically accepted in some completion
- a_{2} is credulously accepted in some completion
- a_{1} is credulously accepted in each completion

Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niskanen, Jörg Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

Arguments Acceptability in IAFs

In the rest of the talk, mainly focus on:

- Possible credulous acceptability (PCA): a is in some extension of some completion
- Necessary skeptical acceptability (NSA): a is in each extension of each completion

σ	$\sigma-\mathrm{PCA}$	σ-NSA
ad	NP-c	trivial
$\mathbf{s t}$	NP-c	coNP-c
$\mathbf{c o}$	NP-c	coNP-c
$\mathbf{g r}$	NP-c	coNP-c
$\mathbf{p r}$	NP-c	$\Pi_{2}^{P}-\mathrm{c}$

Dorothea Baumeister, Matti Järvisalo, Daniel Neugebauer, Andreas Niskanen, Jörg Rothe: Acceptance in incomplete argumentation frameworks. Artif. Intell. 295: 103470 (2021)

Motivation: Revising/Merging AFs

Previous work:

- Extension-based revision of AFs

- Extension-based merging of AFs

Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, Pierre Marquis: On the Revision of Argumentation Systems: Minimal Change of Arguments Statuses. KR 2014
Jérôme Delobelle, Adrian Haret, Sébastien Konieczny, Jean-Guy Mailly, Julien Rossit, Stefan Woltran: Merging of Abstract Argumentation Frameworks. KR 2016: 33-42

Example

- Suppose that the result of revising an AF yields the extensions $\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}, a_{3}\right\}\right\}$
- It is not representable with a single AF: realizability issue

Paul E. Dunne, Wolfgang Dvorák, Thomas Linsbichler, Stefan Woltran: Characteristics of multiple viewpoints in abstract argumentation. Artif. Intell. 228: 153-178 (2015)

Example

- Suppose that the result of revising an AF yields the extensions $\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}, a_{3}\right\}\right\}$
- It is not representable with a single AF: realizability issue

Paul E. Dunne, Wolfgang Dvorák, Thomas Linsbichler, Stefan Woltran: Characteristics of multiple viewpoints in abstract argumentation. Artif. Intell. 228: 153-178 (2015)

- It is representable by two AFs:

Example

- Suppose that the result of revising an AF yields the extensions $\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}, a_{3}\right\}\right\}$
- It is not representable with a single AF: realizability issue

Paul E. Dunne, Wolfgang Dvorák, Thomas Linsbichler, Stefan Woltran: Characteristics of multiple viewpoints in abstract argumentation. Artif. Intell. 228: 153-178 (2015)

- It is representable by two AFs:

- Or one single IAF:
(a) a a a_{2}
(a1) $a_{2} \cdots \cdots \rightarrow a^{33}$

Example

- Suppose that the result of revising an AF yields the extensions $\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}, a_{3}\right\}\right\}$
- It is not representable with a single AF: realizability issue

Paul E. Dunne, Wolfgang Dvorák, Thomas Linsbichler, Stefan Woltran: Characteristics of multiple viewpoints in abstract argumentation. Artif. Intell. 228: 153-178 (2015)

- It is representable by two AFs:

- Or one single IAF:

- Question: Can we represent any set of AFs/extensions by a single IAF?

AF Representation by Means of IAFs

- Can we represent these AFs with one IAF?

AF Representation by Means of IAFs

(a) a_{2}

- Can we represent these AFs with one IAF?

AF Representation by Means of IAFs

- Can we represent these AFs with one IAF?

- Problem: this IAF has other completions

AF Representation by Means of IAFs

- Can we represent these AFs with one IAF?

- Problem: this IAF has other completions

- Question: Can we generalize the IAF model to represent any set of AFs/extensions?

Outline

(2) Background: Abstract Argumentation
(2) Incomplete AFs

- Definitions and Complexity
- The Disjunction Problem
(3) Rich Incomplete AFs

4 Constrained Incomplete AFs

- Definition
- Expressiveness of CIAFs
- CIAFs and Extension Enforcement
(5) Conclusion

Rich IAFs

Main idea:

- Add a new kind of attacks, where the uncertainty concerns the direction
- Borrowed from Control AFs (Dimopoulos et al 2018)
- This new kind of uncertainty can be mixed with uncertain arguments and uncertain attacks

Yannis Dimopoulos, Jean-Guy Mailly, Pavlos Moraitis: Control Argumentation Frameworks. AAAI 2018:
4678-4685
Jean-Guy Mailly: A Note on Rich Incomplete Argumentation Frameworks. CoRR abs/2009.04869 (2020)

Rich IAFs

Main idea:

- Add a new kind of attacks, where the uncertainty concerns the direction
- Borrowed from Control AFs (Dimopoulos et al 2018)
- This new kind of uncertainty can be mixed with uncertain arguments and uncertain attacks

- There certainly is a conflict between a_{1} and a_{2}, but we are not sure of the direction:
- $\left(a_{1}, a_{2}\right)$,
- $\left(a_{2}, a_{1}\right)$,
- or both $\left(a_{1}, a_{2}\right)$ and $\left(a_{2}, a_{1}\right)$

Yannis Dimopoulos, Jean-Guy Mailly, Pavlos Moraitis:Control Argumentation Frameworks. AAAI 2018: 4678-4685
Jean-Guy Mailly: A Note on Rich Incomplete Argumentation Frameworks. CoRR abs/2009.04869 (2020)

Completions of Rich IAFs

Jean-Guy Mailly: A Note on Rich Incomplete Argumentation Frameworks. CoRR abs/2009.04869 (2020)

Complexity of Rich IAFs

Main result:

- The complexity of all reasoning tasks is the same, compared to IAFs
- Intuition of the proofs: guessing a completion of an IAF or guessing a completion of a RIAF is the same thing. Then verifying whether the completion satisfies some properties is also similar

Expressiveness of Rich IAFs

- Rich IAFs a strictly more expressive than IAFs

(a) $\rightarrow a_{2}$

- There is no IAF with exactly these completions

Expressiveness of Rich IAFs

- Rich IAFs a strictly more expressive than IAFs

- There is no IAF with exactly these completions
- But Rich IAFs are not "maximally" expressive

- There is no (Rich) IAF with exactly these completions

Expressiveness of Rich IAFs

- Rich IAFs a strictly more expressive than IAFs

- There is no IAF with exactly these completions
- But Rich IAFs are not "maximally" expressive

- There is no (Rich) IAF with exactly these completions

Question

Can we have a framework more expressive than Rich IAFs?

Outline

(2) Background: Abstract Argumentation
(2) Incomplete AFs

- Definitions and Complexity
- The Disjunction Problem
(3) Rich Incomplete AFs
(4) Constrained Incomplete AFs
- Definition
- Expressiveness of CIAFs
- CIAFs and Extension Enforcement
(5) Conclusion

Constrained Incomplete AFs

CIAF

$C=\left\langle A, A^{?}, R, R^{?}, \phi\right\rangle$ where

- $\left\langle A, A^{?}, R, R^{?}\right\rangle$ is a "classical" IAF
- ϕ is a constraint on the completions built on $\operatorname{Arg}_{A \cup A}$? $\cup A t t_{A \cup A}$?
- $\operatorname{Arg}_{X}=\left\{\arg _{a} \mid a \in X\right\}$
- Attx $_{x}=\left\{\operatorname{att}_{a, b} \mid(a, b) \in X \times X\right\}$

Constrained Incomplete AFs

CIAF

$C=\left\langle A, A^{?}, R, R^{?}, \phi\right\rangle$ where

- $\left\langle A, A^{?}, R, R^{?}\right\rangle$ is a "classical" IAF
- ϕ is a constraint on the completions built on $\operatorname{Arg}_{A \cup A} \cup A t t_{A \cup A^{\prime}}$?
- $\operatorname{Arg}_{X}=\left\{\arg _{a} \mid a \in X\right\}$
- Attx $=\left\{\operatorname{att}_{a, b} \mid(a, b) \in X \times X\right\}$
- Example: $C=\left\langle\left\{a_{1}\right\},\left\{a_{2}, a_{3}\right\},\left\{\left(a_{2}, a_{1}\right),\left(a_{3}, a_{1}\right)\right\}, \emptyset, \arg _{a_{2}} \oplus \arg _{a_{3}}\right\rangle$

Jean-Guy Mailly: Constrained Incomplete Argumentation Frameworks. ECSQARU 2021: 103-116

Mapping an AF to a Formula

Given \mathcal{A} the set of all possible arguments and $F=\langle A, R\rangle$ with $A \subseteq \mathcal{A}$

$$
\psi_{F}=\left(\bigwedge_{a \in A} \arg _{a}\right) \wedge\left(\bigwedge_{a \in \mathcal{A} \backslash A} \neg \arg _{a}\right) \wedge\left(\bigwedge_{(a, b) \in R} \operatorname{att}_{a, b}\right) \wedge\left(\bigwedge_{(a, b) \in(\mathcal{A} \times \mathcal{A}) \backslash R} \neg \operatorname{att}_{a, b}\right)
$$

Mapping an AF to a Formula

Given \mathcal{A} the set of all possible arguments and $F=\langle A, R\rangle$ with $A \subseteq \mathcal{A}$

$$
\psi_{F}=\left(\bigwedge_{a \in A} \arg _{a}\right) \wedge\left(\bigwedge_{a \in \mathcal{A} \backslash A} \neg \arg _{a}\right) \wedge\left(\bigwedge_{(a, b) \in R} \operatorname{att}_{a, b}\right) \wedge\left(\bigwedge_{(a, b) \in(\mathcal{A} \times \mathcal{A}) \backslash R} \neg \operatorname{att}_{a, b}\right)
$$

- Example, with $\mathcal{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$:

- $\psi_{F}=\arg _{a_{1}} \wedge \arg _{a_{2}} \wedge \neg \arg _{a_{\mathbf{3}}} \wedge \operatorname{att}_{a_{2}, a_{1}} \wedge\left(\bigwedge_{(a, b) \in(\mathcal{A} \times \mathcal{A}) \backslash R} \neg \operatorname{att}_{a, b}\right)$

Mapping an AF to a Formula

Given \mathcal{A} the set of all possible arguments and $F=\langle A, R\rangle$ with $A \subseteq \mathcal{A}$

$$
\psi_{F}=\left(\bigwedge_{a \in A} \arg _{a}\right) \wedge\left(\bigwedge_{a \in \mathcal{A} \backslash A} \neg \arg _{a}\right) \wedge\left(\bigwedge_{(a, b) \in R} \operatorname{att}_{a, b}\right) \wedge\left(\bigwedge_{(a, b) \in(\mathcal{A} \times \mathcal{A}) \backslash R} \neg \operatorname{att}_{a, b}\right)
$$

- Example, with $\mathcal{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$:

- $\psi_{F}=\arg _{a_{1}} \wedge \arg _{a_{2}} \wedge \neg \arg _{a_{\mathbf{3}}} \wedge \operatorname{att}_{a_{2}, a_{1}} \wedge\left(\bigwedge_{(a, b) \in(\mathcal{A} \times \mathcal{A}) \backslash R} \neg \operatorname{att}_{a, b}\right)$

- $\psi_{F^{\prime}}=\arg _{a_{1}} \wedge \arg _{a_{\mathbf{3}}} \wedge \neg \arg _{a_{\mathbf{2}}} \wedge \operatorname{att}_{a_{\mathbf{3}}, \mathrm{a}_{\mathbf{1}}} \wedge\left(\bigwedge_{(a, b) \in(\mathcal{A} \times \mathcal{A}) \backslash R} \neg \operatorname{att}_{a, b}\right)$

Mapping AFs to a CIAF

(a1) a

Mapping AFs to a CIAF

- A (very) naive solution: consider all the arguments and all possible attacks as uncertain, and take the constraint $\phi=\psi_{F} \vee \psi_{F^{\prime}}$

Mapping AFs to a CIAF

- A (very) naive solution: consider all the arguments and all possible attacks as uncertain, and take the constraint $\phi=\psi_{F} \vee \psi_{F^{\prime}}$
- A (slightly) less naive solution:

Mapping AFs to a CIAF

- A (very) naive solution: consider all the arguments and all possible attacks as uncertain, and take the constraint $\phi=\psi_{F} \vee \psi_{F^{\prime}}$
- A (slightly) less naive solution:

Proposition

Any set of AFs \mathcal{F} can be mapped to a CIAF s.t. its completions correspond to \mathcal{F}

Jean-Guy Mailly: Constrained Incomplete Argumentation Frameworks. ECSQARU 2021: 103-116

Mapping Extensions to a CIAF

- Given $\mathcal{E}=\left\{E_{1}, \ldots, E_{n}\right\}$, each $E_{i} \subseteq \mathcal{A}$ can be mapped to $F_{i}=\left\langle\mathcal{A}, R_{i}\right\rangle$ with $R_{i}=\left\{(a, b) \mid a \in E_{i}, b \in \mathcal{A} \backslash E_{i}\right\}$

Mapping Extensions to a CIAF

- Given $\mathcal{E}=\left\{E_{1}, \ldots, E_{n}\right\}$, each $E_{i} \subseteq \mathcal{A}$ can be mapped to $F_{i}=\left\langle\mathcal{A}, R_{i}\right\rangle$ with $R_{i}=\left\{(a, b) \mid a \in E_{i}, b \in \mathcal{A} \backslash E_{i}\right\}$
- Example: $\mathcal{E}=\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{2}, a_{3}\right\}\right\}, \mathcal{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$
- Given $\mathcal{E}=\left\{E_{1}, \ldots, E_{n}\right\}$, each $E_{i} \subseteq \mathcal{A}$ can be mapped to $F_{i}=\left\langle\mathcal{A}, R_{i}\right\rangle$ with $R_{i}=\left\{(a, b) \mid a \in E_{i}, b \in \mathcal{A} \backslash E_{i}\right\}$
- Example: $\mathcal{E}=\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{2}, a_{3}\right\}\right\}, \mathcal{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$

Mapping Extensions to a CIAF

- Given $\mathcal{E}=\left\{E_{1}, \ldots, E_{n}\right\}$, each $E_{i} \subseteq \mathcal{A}$ can be mapped to $F_{i}=\left\langle\mathcal{A}, R_{i}\right\rangle$ with $R_{i}=\left\{(a, b) \mid a \in E_{i}, b \in \mathcal{A} \backslash E_{i}\right\}$
- Example: $\mathcal{E}=\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{2}, a_{3}\right\}\right\}, \mathcal{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$

- Then, $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ can be mapped to a CIAF (see previous result)

Mapping Extensions to a CIAF

- Given $\mathcal{E}=\left\{E_{1}, \ldots, E_{n}\right\}$, each $E_{i} \subseteq \mathcal{A}$ can be mapped to $F_{i}=\left\langle\mathcal{A}, R_{i}\right\rangle$ with $R_{i}=\left\{(a, b) \mid a \in E_{i}, b \in \mathcal{A} \backslash E_{i}\right\}$
- Example: $\mathcal{E}=\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{2}, a_{3}\right\}\right\}, \mathcal{A}=\left\{a_{1}, a_{2}, a_{3}\right\}$

- Then, $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ can be mapped to a CIAF (see previous result)

Proposition

Any set of extensions \mathcal{E} can be mapped to a CIAF s.t. the extensions of its completions correspond to \mathcal{E}

[^0]
Open Question

How can we build the "best" CIAF?

- Best graph $\left\langle A, A^{?}, R, R^{?}\right\rangle$: minimize the distance w.r.t. some input

Sylvie Coste-Marquis, Caroline Devred, Sébastien Konieczny, Marie-Christine Lagasquie-Schiex, Pierre Marquis: On the merging of Dung's argumentation systems. Artif. Intell. 171(10-15): 730-753 (2007)

Open Question

How can we build the "best" CIAF?

- Best graph $\left\langle A, A^{?}, R, R^{?}\right\rangle$: minimize the distance w.r.t. some input

Sylvie Coste-Marquis, Caroline Devred, Sébastien Konieczny, Marie-Christine Lagasquie-Schiex, Pierre Marquis: On the merging of Dung's argumentation systems. Artif. Intell. 171(10-15): 730-753 (2007)

- Best formula ϕ (w.r.t. size, computational property): knowledge compilation? Adnan Darwiche, Pierre Marquis: A Knowledge Compilation Map. J. Artif. Intell. Res. 17: 229-264 (2002)

Complexity Issues

- Possible credulous acceptability: a is in some extension of some completion
- Necessary skeptical acceptability: a is in each extension of each completion
- Complexity is the same as in classical IAFs
- Intuition: checking whether a completion satisfies the constraint is polynomial

σ	$\sigma-\mathrm{PCA}$	σ-NSA
$\mathbf{a d}$	NP-c	trivial
$\mathbf{s t}$	NP-c	coNP-c
$\mathbf{c o}$	NP-c	coNP-c
$\mathbf{g r}$	NP-c	coNP-c
$\mathbf{p r}$	NP-c	$\Pi_{2}^{P}-\mathrm{c}$

Unpublished (but almost certain) claim:

- other acceptability problems (PSA, NCA) have the same complexity for CIAFs and standard IAFs
- verification problems are NP/coNP-c for CIAFs when they are polynomial for standard IAFs (or remain the same when they are already intractable for IAFs)

Extension Enforcement

$$
\left.\begin{array}{c}
F=\langle A, R\rangle \\
E \subseteq A
\end{array}\right\} \quad \Longrightarrow \quad F^{\prime}=\left\langle A^{\prime}, R^{\prime}\right\rangle
$$

such that E is (included in) an extension of F^{\prime} for a given semantics

Extension Enforcement

$$
\left.\begin{array}{c}
F=\langle A, R\rangle \\
E \subseteq A
\end{array}\right\} \quad \Longrightarrow \quad F^{\prime}=\left\langle A^{\prime}, R^{\prime}\right\rangle
$$

such that E is (included in) an extension of F^{\prime} for a given semantics

- Normal expansion: new AF which adds new arguments and attacks, but does not change the attacks between former arguments

Ringo Baumann, Gerhard Brewka: Expanding Argumentation Frameworks: Enforcing and Monotonicity Results. COMMA 2010: 75-86

Extension Enforcement: Possibility Results

- Possibility results based on (sometimes unrealistic) examples

Extension Enforcement: Possibility Results

- Possibility results based on (sometimes unrealistic) examples

$\{a, d\}$ can be enforced as (part of) a stable extension

Extension Enforcement: Possibility Results

- Possibility results based on (sometimes unrealistic) examples

$\{a, d\}$ can be enforced as (part of) a stable extension

Extension Enforcement: Possibility Results

- Possibility results based on (sometimes unrealistic) examples

$\{a, d\}$ can be enforced as (part of) a stable extension

- The existence of an "ultimate attacker" like x is not plausible in real debates

Parameterized Expansion

Given

- $F=\langle A, R\rangle$ an $A F$
- \mathcal{A} a set of available arguments s.t. $A \cap \mathcal{A}=\emptyset$
- $\mathcal{R} \subseteq((A \cup \mathcal{A}) \times(A \cup \mathcal{A})) \backslash(A \times A)$
we say that $F^{\prime}=\left\langle A^{\prime}, R^{\prime}\right\rangle$ is a \mathcal{A} - \mathcal{R}-parameterized expansion of F iff
- F^{\prime} is a normal expansion of F,
- $A \subseteq A^{\prime} \subseteq A \cup \mathcal{A}$,
- $R^{\prime}=(R \cup \mathcal{R}) \cap\left(A^{\prime} \times A^{\prime}\right)$.

Parameterized Expansion

Given

- $F=\langle A, R\rangle$ an $A F$
- \mathcal{A} a set of available arguments s.t. $A \cap \mathcal{A}=\emptyset$
- $\mathcal{R} \subseteq((A \cup \mathcal{A}) \times(A \cup \mathcal{A})) \backslash(A \times A)$
we say that $F^{\prime}=\left\langle A^{\prime}, R^{\prime}\right\rangle$ is a \mathcal{A} - \mathcal{R}-parameterized expansion of F iff
- F^{\prime} is a normal expansion of F,
- $A \subseteq A^{\prime} \subseteq A \cup \mathcal{A}$,
- $R^{\prime}=(R \cup \mathcal{R}) \cap\left(A^{\prime} \times A^{\prime}\right)$.
\mathcal{A} and \mathcal{R} encode the possible actions of the agent in the debate

Parameterized Enforcement

From $F=\langle A, R\rangle, \mathcal{A}$ and \mathcal{R}

- we call "possible action" any F^{\prime} that is a \mathcal{A} - \mathcal{R}-parameterized expansion of F
- we can build a CIAF C s.t. its completions correspond to the possible actions

Parameterized Enforcement

From $F=\langle A, R\rangle, \mathcal{A}$ and \mathcal{R}

- we call "possible action" any F^{\prime} that is a $\mathcal{A}-\mathcal{R}$-parameterized expansion of F
- we can build a CIAF C s.t. its completions correspond to the possible actions

Proposition

The set of arguments S can be enforced in F iff it is credulously accepted w.r.t. some completion of C

Parameterized Enforcement

From $F=\langle A, R\rangle, \mathcal{A}$ and \mathcal{R}

- we call "possible action" any F^{\prime} that is a $\mathcal{A}-\mathcal{R}$-parameterized expansion of F
- we can build a CIAF C s.t. its completions correspond to the possible actions

Proposition

The set of arguments S can be enforced in F iff it is credulously accepted w.r.t. some completion of C

- Research on CIAFs provides means for implementing realistic methods for enforcing extensions in argument-base dialogue

Outline

(2) Background: Abstract Argumentation
(2) Incomplete AFs

- Definitions and Complexity
- The Disjunction Problem
(3) Rich Incomplete AFs

4 Constrained Incomplete AFs

- Definition
- Expressiveness of CIAFs
- CIAFs and Extension Enforcement
(5) Conclusion

Related Work: Constraining the completions

- Independently of our work, Herzig and Yuste-Ginel defined a framework equivalent to our CIAFs (using the same name), and proved that it is "maximally" expressive
- Fazzinga et al. studied Argument-Incomplete AFs (IAFs with $R^{?}=\emptyset$) and Attack-Incomplete AFs (IAFs with $A^{?}=\emptyset$) with correlations, which are special cases of our constraints $(X \rightarrow Y, X \vee Y, \neg(X \wedge Y), X \oplus Y)$, and focus on the possible verification problem
- Given an IAF with correlations I and a set of arguments S, is S an extension of some completion of I ?

[^1]
Related Work: IAFs without completions

- Semantics have been defined for reasoning with Partial AFs (\simeq Attack-Incomplete AFs, i.e. IAFs with $A=\emptyset$) without using the set of completions (Cayrol et al 2007), by adapting the definitions of conflict-freeness and defense to this setting
- Recent work: generalization to the work by (Cayrol et al 2007) to IAFs, with more semantics studied (Mailly 2021, Mailly 2023)
- Same complexity as in Dung's framework
- Available SAT-based solver

Claudette Cayrol, Caroline Devred, Marie-Christine Lagasquie-Schiex: Handling Ignorance in Argumentation: Semantics of Partial Argumentation Frameworks. ECSQARU 2007: 259-270
Jean-Guy Mailly: Extension-Based Semantics for Incomplete Argumentation Frameworks. CLAR 2021: 322-341
Jean-Guy Mailly: Extension-based Semantics for Incomplete Argumentation Frameworks: Properties, Complexity and Algorithms. JLC, (2023?), To Appear

Conclusion

Summary

- CIAFs increase the expressivity of IAFs without increasing the complexity for
- possible credulous acceptability
- necessary skeptical acceptability
- Suitable representation of "disjunction" of AFs or extensions
- useful for AF revision or AF merging
- Encodes a new type of enforcement operator

Conclusion

Summary

- CIAFs increase the expressivity of IAFs without increasing the complexity for
- possible credulous acceptability
- necessary skeptical acceptability
- Suitable representation of "disjunction" of AFs or extensions
- useful for AF revision or AF merging
- Encodes a new type of enforcement operator

Future work

- Design methods for choosing the optimal CIAF corresponding to a set of AFs/extensions
- Implement AF revision/merging based of CIAFs
- Implement extension enforcement based on CIAFs
- Define negotiation methods based on CIAFs

Conclusion

Summary

- CIAFs increase the expressivity of IAFs without increasing the complexity for
- possible credulous acceptability
- necessary skeptical acceptability
- Suitable representation of "disjunction" of AFs or extensions
- useful for AF revision or AF merging
- Encodes a new type of enforcement operator

Future work

- Design methods for choosing the optimal CIAF corresponding to a set of AFs/extensions
- Implement AF revision/merging based of CIAFs
- Implement extension enforcement based on CIAFs
- Define negotiation methods based on CIAFs

More details:
Jean-Guy Mailly: On Incompleteness in Abstract Argumentation: Complexity and Expressiveness. SUM 2022: 19-33
Jean-Guy Mailly: Yes, no, maybe, I don't know: Complexity and application of abstract argumentation with incomplete knowledge. Argument. Comput. 13(3): 291-324.

[^0]: Jean-Guy Mailly: Constrained Incomplete Argumentation Frameworks. ECSQARU 2021: 103-116

[^1]: Andreas Herzig, Antonio Yuste-Ginel: Abstract Argumentation with Qualitative Uncertainty: An Analysis in Dynamic Logic. CLAR 2021: 190-208
 Bettina Fazzinga, Sergio Flesca, Filippo Furfaro: Reasoning over Argument-Incomplete AAFs in the Presence of Correlations. IJCAI 2021: 189-195
 Bettina Fazzinga, Sergio Flesca, Filippo Furfaro: Reasoning over Attack-incomplete AAFs in the Presence of Correlations. KR 2021: 301-311

