An introduction to robust combinatorial optimization

Michael Poss

October 18, 2022

Optimality: criterion max min (or min max)

Optimality: criterion max min (or min max)

Feasibility: all scenarios matter

Like shortest path but with 2 resources

- Cost
- Time $\leq C \Leftrightarrow \sum_{a \in p} U_{a} \leq C \forall u \in \mathcal{U}$

Feasibility: all scenarios matter

Like shortest path but with 2 resources

- Cost
- Time $\leq C \Leftrightarrow \sum_{a \in p} u_{a} \leq C$

Feasibility: all scenarios matter

Like shortest path but with 2 resources

- Cost
- Time $\leq C \Leftrightarrow \sum_{a \in p} u_{a} \leq C \forall u \in \mathcal{U}$

Vehicle routing problem

Different robust counterparts:

- Cost uncertainty
- Demand uncertainty

- Travel time uncertainty

Vehicle routing problem

Different robust counterparts:

- Cost uncertainty
- Demand uncertainty:

$$
\sum_{i \in \text { route }} u_{i} \leq \text { Capacity, } \quad \forall u \in \mathcal{U} \text {, route } \in \text { Routes }
$$

- Travel time uncertainty

Numerical example with demand uncertainty

- A company needs to be pick up packages of uncertain dimensions
- The company owns 6 vehicles
- Possibility of renting an additional vehicle
- Simulating the failure probability by sampling 10^{6} demand values

Numerical example with demand uncertainty

- A company needs to be pick up packages of uncertain dimensions
- The company owns 6 vehicles
- Possibility of renting an additional vehicle
- Simulating the failure probability by sampling 10^{6} demand values

Robust optimization

How much do we know ?

Mean value
(Deterministic)

Stochastic

static VS adjustable

Static decisions \rightarrow uncertainty revealed
Complexity Easy for LP $\odot, \mathcal{N} \mathcal{P}$-hard for combinatorial optimization \odot MILP reformulation ©

Two-stages decisions \rightarrow uncertainty revealed $\rightarrow-\rightarrow$ more decisions Complexity $\mathcal{N} \mathcal{P}$-hard for LP © , decomposition algorithms ©

Multi-stages decisions \rightarrow uncertainty \rightarrow decisions \rightarrow uncertainty - Complexity $\mathcal{N} \mathcal{P}$-hard for LP \odot, cannot be solved to optimality \mathcal{C}^{2}

static VS adjustable

Static decisions \rightarrow uncertainty revealed
Complexity Easy for LP $\odot, \mathcal{N} \mathcal{P}$-hard for combinatorial optimization \odot MILP reformulation $)^{-}$

Two-stages decisions \rightarrow uncertainty revealed \rightarrow more decisions
Complexity $\mathcal{N} \mathcal{P}$-hard for LP \odot, decomposition algorithms \odot

Multi-stages decisions \rightarrow uncertainty \rightarrow decisions \rightarrow uncertainty \rightarrow Complexity $\mathcal{N} \mathcal{P}$-hard for LP \odot, cannot be solved to ontimality \mathcal{Q}

static VS adjustable

Static decisions \rightarrow uncertainty revealed
Complexity Easy for LP $\odot, \mathcal{N} \mathcal{P}$-hard for combinatorial optimization \odot MILP reformulation $)^{-}$

Two-stages decisions \rightarrow uncertainty revealed \rightarrow more decisions
Complexity $\mathcal{N} \mathcal{P}$-hard for LP \odot, decomposition algorithms \odot

Multi-stages decisions \rightarrow uncertainty \rightarrow decisions \rightarrow uncertainty $\rightarrow \ldots$ Complexity $\mathcal{N} \mathcal{P}$-hard for LP \odot, cannot be solved to optimality \odot

static VS adjustable

Static decisions \rightarrow uncertainty revealed
Complexity Easy for LP $\odot, \mathcal{N} \mathcal{P}$-hard for combinatorial optimization \odot MILP reformulation $)^{-}$

Two-stages decisions \rightarrow uncertainty revealed \rightarrow more decisions
Complexity $\mathcal{N} \mathcal{P}$-hard for LP \odot, decomposition algorithms \odot

Multi-stages decisions \rightarrow uncertainty \rightarrow decisions \rightarrow uncertainty $\rightarrow \ldots$ Complexity $\mathcal{N} \mathcal{P}$-hard for LP \odot, cannot be solved to optimality \odot

discrete uncertainty VS convex uncertainty

$$
\mathcal{U}=\operatorname{vertices}(\mathcal{P})
$$

U

Observation

In many cases, $\mathcal{U} \sim \mathcal{P}$.

Exceptions:

- robust constraints $f(x, u) \leq b$ and f non-concave in u
- multi-stages problems with integer adiustable variables

discrete uncertainty VS convex uncertainty

$$
\mathcal{U}=\operatorname{vertices}(\mathcal{P})
$$

Observation

In many cases, $\mathcal{U} \sim \mathcal{P}$.
Exceptions:

- robust constraints $f(x, u) \leq b$ and f non-concave in u
- multi-stages problems with integer adjustable variables

Robust combinatorial optimization

Combinatorial problem

- $\mathcal{X} \subseteq\{0,1\}^{n}, u_{0} \in \mathbb{R}^{n}$

$$
\operatorname{CO} \quad \min _{x \in \mathcal{X}} u_{0}^{T} x
$$

Robust counterparts with cost uncertainty

(1) $\mathcal{X} \subseteq\{0,1\}^{n}, \mathcal{U} \subset \mathbb{R}^{n}$

Robust combinatorial optimization

Combinatorial problem

- $\mathcal{X} \subseteq\{0,1\}^{n}, u_{0} \in \mathbb{R}^{n}$

$$
\operatorname{CO} \quad \min _{x \in \mathcal{X}} u_{0}^{T} x
$$

Robust counterparts with cost uncertainty
(1) $\mathcal{X} \subseteq\{0,1\}^{n}, \mathcal{U} \subset \mathbb{R}^{n}$

$$
\mathcal{U}-C O \quad \min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u_{0}^{T} x
$$

(2) Regret version:

Robust combinatorial optimization

Combinatorial problem

- $\mathcal{X} \subseteq\{0,1\}^{n}, u_{0} \in \mathbb{R}^{n}$

$$
\operatorname{CO} \quad \min _{x \in \mathcal{X}} u_{0}^{T} x
$$

Robust counterparts with cost uncertainty
(1) $\mathcal{X} \subseteq\{0,1\}^{n}, \mathcal{U} \subset \mathbb{R}^{n}$

$$
\mathcal{U}-C O \quad \min _{x \in \mathcal{X}} \overbrace{\max _{u \in \mathcal{U}} u_{0}^{T} x} \Leftrightarrow \min _{x \in \mathcal{X}} f(x)
$$

(2) Regret version:

Robust combinatorial optimization

Combinatorial problem

- $\mathcal{X} \subseteq\{0,1\}^{n}, u_{0} \in \mathbb{R}^{n}$

$$
C O \quad \min _{x \in \mathcal{X}} u_{0}^{T} x
$$

Robust counterparts with cost uncertainty
(1) $\mathcal{X} \subseteq\{0,1\}^{n}, \mathcal{U} \subset \mathbb{R}^{n}$

$$
\mathcal{U}-C O \quad \min _{x \in \mathcal{X}} \overbrace{\max _{u \in \mathcal{U}} u_{0}^{T} x}^{f(x)} \Leftrightarrow \min _{x \in \mathcal{X}} f(x)
$$

(2) Regret version:

Robust combinatorial optimization

Combinatorial problem

- $\mathcal{X} \subseteq\{0,1\}^{n}, u_{0} \in \mathbb{R}^{n}$

$$
\operatorname{CO} \quad \min _{x \in \mathcal{X}} u_{0}^{T} x
$$

Robust counterparts with cost uncertainty
(1) $\mathcal{X} \subseteq\{0,1\}^{n}, \mathcal{U} \subset \mathbb{R}^{n}$

$$
\mathcal{U}-\mathrm{CO} \quad \min _{x \in \mathcal{X}} \overbrace{\max _{u \in \mathcal{U}} u_{0}^{T} x}^{f(x)} \Leftrightarrow \min _{x \in \mathcal{X}} f(x)
$$

(2) Regret version:

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} \overbrace{\max _{u \in \mathcal{U}}\left(u_{0}^{T} x-\min _{y \in \mathcal{X}} u_{0}^{T} y\right)}^{f(x)} \\
& =\quad \min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} \min _{y \in \mathcal{X}}\left(u_{0}^{T} x-u_{0}^{T} y\right)
\end{aligned}
$$

General robust counterpart

$$
\mathcal{X}=\mathcal{X}^{\text {comb }} \cap \mathcal{X}^{\text {num }}:
$$

$\mathcal{X}^{\text {comb }}$ Combinatorial nature, known.
$\mathcal{X}^{\text {num }}$ Numerical uncertainty: $u_{j}^{T} x \leq b_{j}, j=1, \ldots, m$, uncertain.

Example (Vehicle routing)

$\mathcal{X}^{\text {comb }}$ routes in the graph
$\mathcal{X}^{\text {num }}$ demand cannot exceed the capacity
Robust counterpart

General robust counterpart

$$
\mathcal{X}=\mathcal{X}^{\text {comb }} \cap \mathcal{X}^{\text {num }}:
$$

$\mathcal{X}^{\text {comb }}$ Combinatorial nature, known.
$\mathcal{X}^{\text {num }}$ Numerical uncertainty: $u_{j}^{T} x \leq b_{j}, j=1, \ldots, m$, uncertain.

Example (Vehicle routing)

$\mathcal{X}^{\text {comb }}$ routes in the graph
$\mathcal{X}^{\text {num }}$ demand cannot exceed the capacity

Robust counterpart

$$
\begin{equation*}
\min \left\{\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} x:\right. \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathcal{U}-\mathrm{CO} \quad & u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j} \\
& \left.x \in \mathcal{X}^{\text {comb }}\right\} . \tag{2}
\end{array}
$$

Knapsack problem

How to maximize profit without violating the knapsack capacity?

Deterministic situation

profit p, weight u, capacity C

$$
\begin{array}{ll}
\max & \sum_{i \in N} p_{i} x_{i} \\
\text { s.t. } & \sum_{i \in N} u_{i} x_{i} \leq C \\
& x \in\{0,1\}^{|N|} .
\end{array}
$$

- $\mathcal{N} \mathcal{P}$-hard in the weak sense: difficult, but not too much.
- Arizes in vehicle routing, facility location, network design, assignement problems, investment problems, ...

Uncertainty

- 5 items, capacity $=15$
- Scenario $k \Rightarrow u_{k} \times \frac{4}{3}$
max

In general:
而国

Deterministic solution

Uncertainty

- 5 items, capacity $=15$
- Scenario $k \Rightarrow u_{k} \times \frac{4}{3}$

Deterministic solution

Robust solution

In general:
\max

Uncertainty

- 5 items, capacity $=15$
- Scenario $k \Rightarrow u_{k} \times \frac{4}{3}$

Data

$$
\begin{array}{ll}
\max & 10 x_{1}+7 x_{2}+x_{3}+3 x_{4}+2 x_{5} \\
\text { s.t. } & \frac{36}{3} x_{1}+12 x_{2}+2 x_{3}+7 x_{4}+5 x_{5} \leq 15 \\
& 9 x_{1}+\frac{48}{3} x_{2}+2 x_{3}+7 x_{4}+5 x_{5} \leq 15 \\
& 9 x_{1}+12 x_{2}+\frac{8}{3} x_{3}+7 x_{4}+5 x_{5} \leq 15 \\
& 9 x_{1}+12 x_{2}+2 x_{3}+\frac{28}{3} x_{4}+5 x_{5} \leq 15 \\
& 9 x_{1}+12 x_{2}+2 x_{3}+7 x_{4}+\frac{20}{3} x_{5} \leq 15 \\
& x \in\{0,1\}^{5}
\end{array}
$$

Deterministic solution

In general:

Uncertainty

- 5 items, capacity $=15$
- Scenario $k \Rightarrow u_{k} \times \frac{4}{3}$

$$
\begin{array}{ll}
\max & 10 x_{1}+7 x_{2}+x_{3}+3 x_{4}+2 x_{5} \\
\text { s.t. } & \frac{36}{3} x_{1}+12 x_{2}+2 x_{3}+7 x_{4}+5 x_{5} \leq 15 \\
& 9 x_{1}+\frac{48}{3} x_{2}+2 x_{3}+7 x_{4}+5 x_{5} \leq 15 \\
& 9 x_{1}+12 x_{2}+\frac{8}{3} x_{3}+7 x_{4}+5 x_{5} \leq 15 \\
& 9 x_{1}+12 x_{2}+2 x_{3}+\frac{28}{3} x_{4}+5 x_{5} \leq 15 \\
& 9 x_{1}+12 x_{2}+2 x_{3}+7 x_{4}+\frac{20}{3} x_{5} \leq 15 \\
& x \in\{0,1\}^{5}
\end{array}
$$

Deterministic solution

Robust solution

In general:

$$
\begin{array}{ll}
\max & \sum_{i \in N} p_{i} x_{i} \\
\text { s.t. } & \sum_{i \in N} u_{i} x_{i} \leq C \quad \forall u \in \mathcal{U} \\
& x \in\{0,1\}^{N}
\end{array}
$$

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N P} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB
PARTITION PROBLEM

(4) Reduction: $p=\frac{|N|}{2}$, and $\mathcal{U}=\left\{u^{1}, u^{2}\right\}$ such that

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N P} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB

© PARTITION PROBLEM

(9) Reduction: $p=\frac{|N|}{2}$, and $\mathcal{U}=\left\{u^{1}, u^{2}\right\}$ such that

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB.: $\min _{S \subseteq N,|S|=p} \max _{u \in \mathcal{U}} \sum_{i \in S} u_{i}$
© PARTITION PROBLEM

(1) Reduction:
 and $\mathcal{U}=\left\{u^{1}, u^{2}\right\}$ such that

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB.: $\min _{S \subseteq N,|S|=p} \max _{u \in \mathcal{U}} \sum_{i \in S} u_{i}$
(3) PARTITION PROBLEM: $\min _{S \subseteq N,|S|=|N| / 2} \max \left(\sum_{i \in S} a_{i}, \sum_{i \in N \backslash S} a_{i}\right)$
(1) Reduction: $p=\frac{|N|}{2}$, and $\mathcal{U}=\left\{u^{1}, u^{2}\right\}$ such that

discrete uncertainty: \mathcal{U}-CO is hard [Kouvelis and Yu, 2013]

Theorem

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N} \mathcal{P}$-hard even when $|\mathcal{U}|=2$.

Proof.

(1) SELECTION PROBLEM: $\min _{S \subseteq N,|S|=p} \sum_{i \in S} u_{i}$
(2) ROBUST SEL. PROB.: $\min _{S \subseteq N,|S|=p} \max _{u \in \mathcal{U}} \sum_{i \in S} u_{i}$
(3) PARTITION PROBLEM: $\min _{S \subseteq N,|S|=|N| / 2} \max \left(\sum_{i \in S} a_{i}, \sum_{i \in N \backslash S} a_{i}\right)$
(9) Reduction: $p=\frac{|N|}{2}$, and $\mathcal{U}=\left\{u^{1}, u^{2}\right\}$ such that

$$
\begin{aligned}
& u_{i}^{1}=a_{i} \quad \text { and } \quad u_{i}^{2}=\frac{2}{|N|} \sum_{k} a_{k}-a_{i} \\
& \Rightarrow \quad \max _{u \in \mathcal{U}} \sum_{i \in S} u_{i}=\max \left(\sum_{i \in S} a_{i}, \sum_{i \in N \backslash S} a_{i}\right)
\end{aligned}
$$

polyhedral uncertainty: \mathcal{U}-CO is still hard (but solvable)

Theorem (Kouvelis and Yu [2013])

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N} \mathcal{P}$-hard even when \mathcal{U} has a compact description.

Proof.

Theorem (Dualization - Ben-Tal and Nemirovski [1998])

Problem \mathcal{U}-CO is equivalent to a mixed-integer linear program.

polyhedral uncertainty: \mathcal{U}-CO is still hard (but solvable)

Theorem (Kouvelis and Yu [2013])

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N} \mathcal{P}$-hard even when \mathcal{U} has a compact description.

Proof.

(1) $u^{T} x \leq b, \quad u \in \mathcal{U} \Leftrightarrow u^{T} x \leq b, \quad u \in \operatorname{ext}(\mathcal{U})$
(3) $\mathcal{U}=\operatorname{conv}\left(u^{1}, u^{2}\right) \Rightarrow n$ equalities and 2 inequalities

Theorem (Dualization - Ben-Tal and Nemirovski [1998])

Problem \mathcal{U}-CO is equivalent to a mixed-integer linear program.

polyhedral uncertainty: \mathcal{U}-CO is still hard (but solvable)

Theorem (Kouvelis and Yu [2013])

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N P} \mathcal{P}$-hard even when \mathcal{U} has a compact description.

Proof.

(1) $u^{T} x \leq b, \quad u \in \mathcal{U} \Leftrightarrow u^{T} x \leq b, \quad u \in \operatorname{ext}(\mathcal{U})$
(2) $\mathcal{U}=\operatorname{conv}\left(u^{1}, u^{2}\right) \Rightarrow n$ equalities and 2 inequalities

Theorem (Dualization - Ben-Tal and Nemirovski [1998])

Problem U-CO is equivalent to a mixed-integer linear program.

polyhedral uncertainty: \mathcal{U}-CO is still hard (but solvable)

Theorem (Kouvelis and Yu [2013])

The robust shortest path, assignment, spanning tree, ... are $\mathcal{N} \mathcal{P}$-hard even when \mathcal{U} has a compact description.

Proof.

(1) $u^{T} x \leq b, \quad u \in \mathcal{U} \quad \Leftrightarrow \quad u^{T} x \leq b, \quad u \in \operatorname{ext}(\mathcal{U})$
(2) $\mathcal{U}=\operatorname{conv}\left(u^{1}, u^{2}\right) \Rightarrow n$ equalities and 2 inequalities

Theorem (Dualization - Ben-Tal and Nemirovski [1998])

Problem $\mathcal{U}-\mathrm{CO}$ is equivalent to a mixed-integer linear program.

Dualization - cost uncertainty

Theorem (Ben-Tal and Nemirovski [1998])

Consider $\alpha \in \mathbb{R}^{1 \times n}$ and $\beta \in \mathbb{R}^{\prime}$ that define polytope

$$
\mathcal{U}:=\left\{u \in \mathbb{R}_{+}^{n}: \alpha_{k}^{T} u \leq \beta_{k}, k=1, \ldots, l\right\} .
$$

Problem min $\max u^{T} x$ is equivalent to a compact MILP.

$$
x \in \mathcal{X} \quad u \in \mathcal{U}
$$

Proof.

Dualizing the inner maximization:

$$
\begin{aligned}
\min _{x \in \mathcal{X}} \max _{u \in \mathcal{U}} u^{T} x & =\min _{x \in \mathcal{X}} \min \left\{\sum_{k=1}^{\prime} \beta_{k} z_{k}: \sum_{k=1}^{\prime} \alpha_{k i} z_{k} \geq x_{i}, i=1, \ldots, n, z \geq 0\right\} \\
& =\min \left\{\sum_{k=1}^{\prime} \beta_{k} z_{k}: \sum_{k=1}^{\prime} \alpha_{k i} z_{k} \geq x_{i}, i=1, \ldots, n, z \geq 0, x \in X\right\}
\end{aligned}
$$

Dualization example

Can also be applied to robust constraints!

Example (Static problem)

$$
\begin{array}{cl}
\max & 3 x_{1}+5 x_{2}+9 x_{3} \\
\text { s.t. } & u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3} \leq 8 \forall u \in \mathcal{U} \\
& x \in\{0,1\}^{3} .
\end{array}
$$

Example (Uncertainty polytope)

Example (Dualization)

The static problem is equivalent to:

Dualization example

Can also be applied to robust constraints!

Example (Static problem)

$$
\begin{array}{cl}
\max & 3 x_{1}+5 x_{2}+9 x_{3} \\
\text { s.t. } & u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3} \leq 8 \forall u \in \mathcal{U} \\
& x \in\{0,1\}^{3} .
\end{array}
$$

Example (Uncertainty polytope)

$$
\mathcal{U} \equiv\left\{\begin{array}{ll}
3 u_{1}+u_{2}+u_{3} \leq 10 & {\left[z_{1}\right]} \\
u_{1}+2 u_{2} \leq 8 & {\left[z_{2}\right]} \\
u_{1}+2 u_{3} \leq 7 & {\left[z_{3}\right]} \\
u_{2}+u_{3} \leq 5 & {\left[z_{4}\right]} \\
u_{1}, u_{2}, u_{3} \geq 0 &
\end{array}\right\}
$$

Example (Dualization)

The static problem is equivalent to:
\square
$10 z_{1}+8 z_{2}+7 z_{3}+5 z_{4} \leq 8$
$3 z_{1}+z_{2}+z_{3}+z_{4} \geq x_{1}$

The dualized problem is NOT a
knapsack problem anymore!

Dualization example

Can also be applied to robust constraints!

Example (Static problem)

$$
\begin{array}{cl}
\max & 3 x_{1}+5 x_{2}+9 x_{3} \\
\text { s.t. } & u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3} \leq 8 \forall u \in \mathcal{U} \\
& x \in\{0,1\}^{3} .
\end{array}
$$

Example (Uncertainty polytope)

$$
\mathcal{U} \equiv\left\{\begin{array}{ll}
3 u_{1}+u_{2}+u_{3} \leq 10 & {\left[z_{1}\right]} \\
u_{1}+2 u_{2} \leq 8 & {\left[z_{2}\right]} \\
u_{1}+2 u_{3} \leq 7 & {\left[z_{3}\right]} \\
u_{2}+u_{3} \leq 5 & {\left[z_{4}\right]} \\
u_{1}, u_{2}, u_{3} \geq 0 &
\end{array}\right\}
$$

Example (Dualization)

The static problem is equivalent to:
$\max 3 x_{1}+5 x_{2}+9 x_{3}$
s.t. $10 z_{1}+8 z_{2}+7 z_{3}+5 z_{4} \leq 8$ $3 z_{1}+z_{2}+z_{3}+z_{4} \geq x_{1}$ $z_{1}+2 z_{2} \geq x_{2}$
$z_{1}+2 z_{3}+z_{4} \geq x_{3}$ $x \in\{0,1\}^{3}, z \geq 0$.

The dualized problem is NOT a
knapsack problem anymore!

Dualization example

Can also be applied to robust constraints!

Example (Static problem)

$$
\begin{array}{cl}
\max & 3 x_{1}+5 x_{2}+9 x_{3} \\
\text { s.t. } & u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3} \leq 8 \forall u \in \mathcal{U} \\
& x \in\{0,1\}^{3} .
\end{array}
$$

Example (Uncertainty polytope)

$$
\mathcal{U} \equiv\left\{\begin{array}{ll}
3 u_{1}+u_{2}+u_{3} \leq 10 & {\left[z_{1}\right]} \\
u_{1}+2 u_{2} \leq 8 & {\left[z_{2}\right]} \\
u_{1}+2 u_{3} \leq 7 & {\left[z_{3}\right]} \\
u_{2}+u_{3} \leq 5 & {\left[z_{4}\right]} \\
u_{1}, u_{2}, u_{3} \geq 0 &
\end{array}\right\}
$$

Example (Dualization)

The static problem is equivalent to:
$\max 3 x_{1}+5 x_{2}+9 x_{3}$
s.t. $10 z_{1}+8 z_{2}+7 z_{3}+5 z_{4} \leq 8$

$$
3 z_{1}+z_{2}+z_{3}+z_{4} \geq x_{1}
$$

$$
z_{1}+2 z_{2} \geq x_{2}
$$

$$
z_{1}+2 z_{3}+z_{4} \geq x_{3}
$$

$$
x \in\{0,1\}^{3}, z \geq 0
$$

The dualized problem is NOT a knapsack problem anymore!

Cutting plane algorithms [Bertsimas et al., 2016]

$$
\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}
$$

Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

Cutting plane algorithms [Bertsimas et al., 2016]

$\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}$

Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

(1) Solve MP \rightarrow get \tilde{x}, \tilde{z}
(© Solve $\max _{L_{0} \in \mathcal{U}_{0}} u_{0}^{T} \tilde{x}$ and $\max _{L_{j} \in \mathcal{U}_{j}} u_{j}^{T} \tilde{x} \rightarrow$ get $\tilde{u}_{0}, \ldots, \tilde{u}_{m}$
(3) If $\tilde{u}_{0}^{T} \tilde{x}>\tilde{z}$ or $\tilde{u}_{j}^{T} \tilde{x}>b_{j}$ then

Cutting plane algorithms [Bertsimas et al., 2016]

$\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}$

Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

(1) Solve $M P \rightarrow$ get \tilde{x}, \tilde{z}
(2) Solve $\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} \tilde{x}$ and $\max _{u_{j} \in \mathcal{U}_{j}} u_{j}^{T} \tilde{x} \rightarrow$ get $\tilde{u}_{0}, \ldots, \tilde{u}_{m}$
(3) If $\tilde{u}_{0}^{T} \tilde{x}>\tilde{z}$ or $\tilde{u}_{j}^{T} \tilde{x}>b_{j}$ then

Cutting plane algorithms [Bertsimas et al., 2016]

$\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}$

Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

(1) Solve $M P \rightarrow$ get \tilde{x}, \tilde{z}
(2) Solve $\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} \tilde{x}$ and $\max _{u_{j} \in \mathcal{U}_{j}} u_{j}^{T} \tilde{x} \rightarrow$ get $\tilde{u}_{0}, \ldots, \tilde{u}_{m}$
(3) If $\tilde{u}_{0}^{T} \tilde{x}>\tilde{z}$ or $\tilde{u}_{j}^{T} \tilde{x}>b_{j}$ then

Cutting plane algorithms [Bertsimas et al., 2016]

$\mathcal{U}_{0}^{*} \subset \mathcal{U}_{0}, \mathcal{U}_{j}^{*} \subset \mathcal{U}_{j}$

Master problem

$$
M P \quad \min \left\{\begin{array}{l}
z: \\
\\
u_{j}^{T} x \leq b_{j}, \quad j=1, \ldots, m, u_{j} \in \mathcal{U}_{j}^{*}, \\
\\
u_{0}^{T} x \leq z, \quad u_{0} \in \mathcal{U}_{0}^{*}, \\
\\
a_{k}^{T} x \leq d_{k}, \quad k=1, \ldots, \ell \\
\\
\left.x \in\{0,1\}^{n}\right\}
\end{array}\right.
$$

(1) Solve MP \rightarrow get \tilde{x}, \tilde{z}
(2) Solve $\max _{u_{0} \in \mathcal{U}_{0}} u_{0}^{T} \tilde{x}$ and $\max _{u_{j} \in \mathcal{U}_{j}} u_{j}^{T} \tilde{x} \rightarrow \operatorname{get} \tilde{u}_{0}, \ldots, \tilde{u}_{m}$
(3) If $\tilde{u}_{0}^{T} \tilde{x}>\tilde{z}$ or $\tilde{u}_{j}^{T} \tilde{x}>b_{j}$ then

- $\mathcal{U}_{0}^{*} \leftarrow \mathcal{U}_{0}^{*} \cup\left\{\tilde{u}_{0}\right\}$ and $\mathcal{U}_{0}^{*} \leftarrow \mathcal{U}_{j}^{*} \cup\left\{\tilde{u}_{j}\right\}$
- go back to 1

Simpler structure: \mathcal{U}^{Γ}-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

Simpler structure: \mathcal{U}^{Γ}-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

$\mathcal{U}^{\ulcorner }=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n\right.$

Simpler structure: $\mathcal{U} \Gamma$-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

Simpler structure: $\mathcal{U} \Gamma$-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

$$
\mathcal{U}^{\ulcorner }=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq 2\right\}
$$

Simpler structure: $\mathcal{U} \Gamma$-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

$$
\mathcal{U}^{\ulcorner }=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq 1.5\right\}
$$

Simpler structure: \mathcal{U}^{Γ}-robust combinatorial optimization

- $\mathcal{U}=\operatorname{vertices}(\mathcal{P})$: good, but need "simpler" \mathcal{P}

$$
\mathcal{U}^{\ulcorner }=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq 1\right\}
$$

Iterative algorithms for \mathcal{U}^{Γ}

$$
\mathcal{P}=\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq \Gamma\right\}
$$

Theorem (Bertsimas and Sim [2003], Goetzmann et al. [2011], Álvarez-Miranda et al. [2013], Lee and Kwon [2014])

Cost uncertainty $\mathcal{U}^{\Gamma}-\mathrm{CO} \Rightarrow$ solving $\sim n+1$ problems CO . Numerical uncertainty $\mathcal{U}^{\Gamma}-\mathrm{CO} \Rightarrow$ solving $\sim(n+1)^{m}$ problems CO

Iterative algorithms for $\mathcal{U}\ulcorner$

$$
\mathcal{U}^{\ulcorner }=\operatorname{vertices}\left(\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq \Gamma\right\}\right)
$$

Theorem (Bertsimas and Sim [2003], Goetzmann et al. [2011], Álvarez-Miranda et al. [2013], Lee and Kwon [2014])

Cost uncertainty $\mathcal{U}^{\Gamma}-\mathrm{CO} \Rightarrow$ solving $\sim n+1$ problems $C O$. Numerical uncertainty $\mathcal{U}^{\ulcorner }$- CO \Rightarrow solving $\sim(n+1)^{m}$ problems CO

Iterative algorithms for $\mathcal{U}^{\ulcorner }$

$$
\mathcal{U}^{\Gamma}=\text { vertices }\left(\left\{\bar{u}_{i} \leq u_{i} \leq \bar{u}_{i}+\hat{u}_{i}, i=1, \ldots, n, \sum_{i=1}^{n} \frac{u_{i}-\bar{u}_{i}}{\hat{u}_{i}} \leq \Gamma\right\}\right)
$$

Theorem (Bertsimas and Sim [2003], Goetzmann et al. [2011], Álvarez-Miranda et al. [2013], Lee and Kwon [2014])

Cost uncertainty $\mathcal{U}^{\ulcorner }$- $C O \Rightarrow$ solving $\sim n+1$ problems $C O$.
Numerical uncertainty $\mathcal{U}^{\Gamma}-C O \Rightarrow$ solving $\sim(n+1)^{m}$ problems CO.

Example

$\Gamma \hat{u}_{\ell}+\min _{x \in \mathcal{X}} \sum_{i}\left(\bar{u}_{i}+\left[\hat{u}_{i}-\hat{u}_{\ell}\right]^{+}\right) x_{i}$

Example (Static problem)

$\max 3 x_{1}+5 x_{2}+9 x_{3}$
s.t. $u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3} \leq 8 \quad \forall u \in \mathcal{U}^{\ulcorner }$ $x \in\{0,1\}^{3}$.

Example (Uncertainty polytope)

Example (Solution algorithm)

Solve 4 knapsack problems

$\max 3 x_{1}+5 x_{2}+9 x_{3}$ $3 x_{1}+3 x_{2}+4 x_{3} \leq 7$

Example

$$
\Gamma \hat{u}_{\ell}+\min _{x \in \mathcal{X}} \sum_{i}\left(\bar{u}_{i}+\left[\hat{u}_{i}-\hat{u}_{\ell}\right]^{+}\right) x_{i}
$$

Example (Solution algorithm)

Example (Static problem)

$\max 3 x_{1}+5 x_{2}+9 x_{3}$
s.t. $u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3} \leq 8 \quad \forall u \in \mathcal{U}^{\Gamma}$ $x \in\{0,1\}^{3}$.

Example (Uncertainty polytope)

$$
\mathcal{U}^{\ulcorner } \equiv\left\{\begin{array}{l}
3 \leq u_{1} \leq 3+1 \\
2 \leq u_{2} \leq 2+2 \\
1 \leq u_{3} \leq 1+4 \\
\frac{u_{1}-3}{1}+\frac{u_{2}-2}{2}+\frac{u_{3}-1}{4} \leq 1
\end{array}\right\}
$$

Solve 4 knapsack problems

max $3 x_{1}+5 x_{2}+9 x_{3}$
\square
$\max 3 x_{1}+5 x_{2}+9 x_{3}$
\qquad

Example

$$
\Gamma \hat{u}_{\ell}+\min _{x \in \mathcal{X}} \sum_{i}\left(\bar{u}_{i}+\left[\hat{u}_{i}-\hat{u}_{\ell}\right]^{+}\right) x_{i}
$$

Example (Static problem)

$\max 3 x_{1}+5 x_{2}+9 x_{3}$
s.t. $u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3} \leq 8 \quad \forall u \in \mathcal{U}^{\Gamma}$ $x \in\{0,1\}^{3}$.

Example (Uncertainty polytope)

$$
\mathcal{U}^{\ulcorner } \equiv\left\{\begin{array}{l}
3 \leq u_{1} \leq 3+1 \\
2 \leq u_{2} \leq 2+2 \\
1 \leq u_{3} \leq 1+4 \\
\frac{u_{1}-3}{1}+\frac{u_{2}-2}{2}+\frac{u_{3}-1}{4} \leq 1
\end{array}\right\}
$$

Example (Solution algorithm)

Solve 4 knapsack problems

$$
\begin{array}{rrl}
& \max & 3 x_{1}+5 x_{2}+9 x_{3} \\
\left(\hat{u}_{\ell}=0\right) & \text { s.t. } & 4 x_{1}+4 x_{2}+5 x_{3} \leq 8 \\
& & x \in\{0,1\}^{3} . \\
\left(\hat{u}_{\ell}=1\right) & \text { s.t. } & 3 x_{1}+5 x_{2}+9 x_{3} \\
& & x \in\{0,1\}^{3} . \\
& \max & 3 x_{1}+5 x_{2}+9 x_{3} \\
\left(\hat{u}_{\ell}=2\right) & \text { s.t. } & 3 x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
& & x \in\{0,1\}^{3} . \\
& \max & 3 x_{1}+5 x_{2}+9 x_{3} \\
\left(\hat{u}_{\ell}=4\right) & \text { s.t. } & 3 x_{1}+2 x_{2}+1 x_{3} \leq 5 \\
& & x \in\{0,1\}^{3} .
\end{array}
$$

\mathcal{U}^{Γ} : example

- Need to specify \bar{u}, \hat{u}, and 「
- Example: $\bar{u}=\mu$ and $\hat{u}=\sigma$

Vehicle Routing Problem (CVRP) - Compact formulation

Dualization

\min

vehicle k uses arc (i, j) ?
u_{i} uncertain demand at node i
$\min \sum_{i, j} c_{i j} x_{i j}^{k}$
s.t. flow conservation
cycle-breaking

$$
\begin{aligned}
& \sum_{i, j} u_{i} x_{i j}^{k} \leq C, \quad \forall k \in K, u \in U \\
& x \text { binary }
\end{aligned}
$$

cycle-hreaking

Iterative algorithm

Vehicle Routing Problem (CVRP) - Compact formulation

$x_{i j}^{k}$ vehicle k uses arc (i, j) ? u_{i} uncertain demand at node i
$\min \sum_{i, j} c_{i j} x_{i j}^{k}$
s.t. flow conservation
cycle-breaking
$\sum_{i, j} u_{i} x_{i j}^{k} \leq C, \quad \forall k \in K, u \in U$
x binary

Dualization

$$
\min \sum_{i, j, k} c_{i j} x_{i j}^{k}
$$

s.t. flow conservation
cycle-breaking

$$
\begin{aligned}
& \Gamma z^{k}+\sum_{i} y_{i}^{k} \leq C, \quad \forall i \in V, k \in K \\
& z^{k}+y_{i}^{k} \geq \sum_{j} x_{i j}^{k}, \quad \forall k \in K
\end{aligned}
$$

$$
\begin{aligned}
& y, z \geq 0 \\
& x \text { binary }
\end{aligned}
$$

Iterative algorithm
$|K|$ capacity constraints $\Rightarrow(n+1)^{|K|}$
nominal problems to be solved!

Vehicle Routing Problem (CVRP) - Compact formulation

Dualization

$\min \sum_{i, j, k} c_{i j} x_{i j}^{k}$
s.t. flow conservation
cycle-breaking

$$
\begin{aligned}
& \Gamma z^{k}+\sum_{i} y_{i}^{k} \leq C, \quad \forall i \in V, k \in K \\
& z^{k}+y_{i}^{k} \geq \sum_{j} x_{i j}^{k}, \quad \forall k \in K
\end{aligned}
$$

$y, z \geq 0$
x binary

Iterative algorithm

$|K|$ capacity constraints $\Rightarrow(n+1)^{|K|}$
nominal problems to be solved!

Vehicle Routing Problem (CVRP) - Set-partition

x_{r}^{k} vehicle k uses route r ?

$$
\begin{array}{ll}
\min & \sum_{r, k} c_{r} x_{r}^{k} \\
\text { s.t. } & \sum_{r: i \in r} x_{r}^{k}=1, \quad \forall i \in V \\
& x \text { binary }
\end{array}
$$

Pricing problem

$x_{i j}$ new route uses arc (i, j) ?
u_{i} uncertain demand at node i

$$
\begin{array}{ll}
\min & \sum_{i, j} \kappa_{i j} x_{i j} \\
\text { s.t. } & \sum_{i, j} u_{i} x_{i j} \leq C, \quad \forall u \in U \\
& x \text { is a route }
\end{array}
$$

Dualization

\min

Vehicle Routing Problem (CVRP) - Set-partition

x_{r}^{k} vehicle k uses route r ?

$$
\min \sum_{r, k} c_{r} x_{r}^{k}
$$

s.t. $\quad \sum_{r: i \in r} x_{r}^{k}=1, \quad \forall i \in V$ x binary

Pricing problem

$x_{i j}$ new route uses arc (i, j) ?
u_{i} uncertain demand at node i

$$
\begin{array}{ll}
\min & \sum_{i, j} \kappa_{i j} x_{i j} \\
\text { s.t. } & \sum_{i, j} u_{i} x_{i j} \leq C, \quad \forall u \in U \\
& x \text { is a route }
\end{array}
$$

Dualization

$$
\begin{array}{ll}
\min & \sum_{i, j} \kappa_{i j} x_{i j} \\
\text { s.t. } & \left\lceil z+\sum_{i} y_{i} \leq C\right. \\
& z+y_{i} \geq \sum_{j} x_{i j}, \quad \forall i \in V \\
& y, z \geq 0 \\
& x \text { is a route }
\end{array}
$$

Iterative algorithm

Only 1 capacity constraint $\Rightarrow n+1$ nominal problems to be solved!

Examples of numerical results (CVRP)

In.	\#	Iterative algo			Dualization and strengthening		
cls	in.	\#n.	t.	\#opt.	gap	t.	\#opt.
A	26	1.00	2.91	26	1.97%	3440.31	12
B	23	1.05	5.98	23	1.39%	250.96	13
E	11	1.00	11.40	11	2.19%	573.01	5
F	3	5.37	833.42	2	1.10%	55.76	2
M	3	3.33	153.51	3	2.70%	86700.00	1
P	24	1.00	1.48	24	2.09%	976.36	10
all	90	1.11	4.75	89	1.87%	981.90	43

Are all problems easy?

Hard problems must have one of
(1) non-constant number of robust "linear" constraints
(2) "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

\mathcal{U}^{Γ}-robust shortest path with time windows is $\mathcal{N} \mathcal{P}$-hard in the strong

sense.

Theorem (Bougeret et al. [2016])

Minimizing the weighted sum of completion times is $\mathcal{N P}$-hard in the strong sense.

Are all problems easy?

Hard problems must have one of
(1) non-constant number of robust "linear" constraints
(2) "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])
 \mathcal{U}^{Γ}-robust shortest path with time windows is $\mathcal{N} \mathcal{P}$-hard in the strong

sense.

Theorem (Bougeret et al. [2016])
 Minimizing the weighted sum of completion times is NP-hard in the

strong sense.

Are all problems easy?

Hard problems must have one of
(1) non-constant number of robust "linear" constraints
(2) "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

\mathcal{U}^{Γ}-robust shortest path with time windows is $\mathcal{N} \mathcal{P}$-hard in the strong sense.

Theorem (Bougeret et al. [2016])

Minimizing the weighted sum of completion times is $\mathcal{N} \mathcal{P}$-hard in the strong sense.

Are all problems easy?

Hard problems must have one of
(1) non-constant number of robust "linear" constraints
(2) "non-linear" constraints/cost function

Theorem (Pessoa et al. [2015])

\mathcal{U}^{Γ}-robust shortest path with time windows is $\mathcal{N} \mathcal{P}$-hard in the strong sense.

Theorem (Bougeret et al. [2016])

Minimizing the weighted sum of completion times is $\mathcal{N P}$-hard in the strong sense.

Cookbook for static problems

Dualization

good easy to apply

bad breaks combinatorial structure (e.g. shortest path)

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions
bad implementation effort

Iterative algorithms

good good theoretical bounds

Cookbook for static problems

Dualization

good easy to apply
bad breaks combinatorial structure (e.g. shortest path)

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions
bad implementation effort

Iterative algorithms

good good theoretical bounds
bad solving n^{5} problems can be too much

Cookbook for static problems

Dualization

good easy to apply
bad breaks combinatorial structure (e.g. shortest path)

Cutting plane algorithms (branch-and-cut)

good handle non-linear functions
bad implementation effort

Iterative algorithms
good good theoretical bounds
bad solving n^{s} problems can be too much

Additional tutorials

- Decision rules (multi-stage setting): Ayse Nur Arslan (Roadef 2022) Available on youtube
- Modelling: Boris Detienne (Roadef 2020) Available on video.umontpellier.fr

Open Journal of Mathematical Optimization (OJMO)

- With classical publishers, either
- papers are behind an (expensive) paywall;
- or authors pay ($\pm 2 \mathrm{k}$) for Open Access (the so-called gold OA)
- OJMO provides a free OA alternative (thanks to Mersenne)
- Papers have doi, indexed in Scopus, DBLP, zbMATH, Crossref, ...

Area Editors

- Continuous Optimization - David Russell Luke
- Discrete Optimization - Sebastian Pokutta
- Optimization under Uncertainty - Guzin Bayraksan
- Computational aspects and applications - Michael Poss

17 published papers, 13 under review, 73 submissions ... and one prize!
2021 Beale - Orchard-Hays Prize Citation

```
Alberto Costa and Giacomo Nannicini
"RBFOpt: an open-source library for black-box optimization with costly function evaluations" Mathematical Programming Computation 10 (2018) 597-629.
"On the implementation of a global optimization method for mixed-variable problems" Open Journal of Mathematical Optimization 2 (2021).
```

Visit https://ojmo.centre-mersenne.org/

References I

E. Álvarez-Miranda, I. Ljubić, and P. Toth. A note on the bertsimas \& sim algorithm for robust combinatorial optimization problems. 4OR, 11(4): 349-360, 2013.
A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations Research, 23(4):769-805, 1998.
D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Math. Program., 98(1-3):49-71, 2003.
Dimitris Bertsimas, lain Dunning, and Miles Lubin. Reformulation versus cutting-planes for robust optimization. Computational Management Science, 13(2):195-217, 2016.
M. Bougeret, Artur A. Pessoa, and M. Poss. Robust scheduling with budgeted uncertainty, 2016. Submitted.
K.-S. Goetzmann, S. Stiller, and C. Telha. Optimization over integers with robustness in cost and few constraints. In WAOA, pages 89-101, 2011.

References II

P. Kouvelis and G. Yu. Robust discrete optimization and its applications, volume 14. Springer Science \& Business Media, 2013.
Taehan Lee and Changhyun Kwon. A short note on the robust combinatorial optimization problems with cardinality constrained uncertainty. 4OR, pages 373-378, 2014.
A. A. Pessoa, L. Di Puglia Pugliese, F. Guerriero, and M. Poss. Robust constrained shortest path problems under budgeted uncertainty. Networks, 66(2):98-111, 2015.

