> Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Selecting the Most Relevant Elements from a Ranking over Sets

Sébastien Konieczny², Stefano Moretti¹, **Ariane Ravier¹** & Paolo Viappiani¹

LAMSADE, Paris Dauphine ² CRIL, Université d'Artois

15th International Conference on Scalable Uncertainty Management (SUM 2022)

October 18th, 2022

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Introduction

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

An introductory example

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

An introductory example

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

A population

A set of coalitions from the population

Framework

Lex-cel

Selection the Most Relevant Elements

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives Let $\mathcal{P}(N)$ denote the set of all possible subsets one can build from a given population *N*.

Let $\mathcal{R}(X)$ denote the set of rankings over a given set X.

Let \succ be a power relation of the form $\Sigma_1 \succ \Sigma_2 \succ \ldots \succ \Sigma_k$.

Let $i_k = |\{S \in \Sigma_k : i \in S\}|$, and $\theta^{\succeq}(i)$ be a *k*-dimensional vector such that $\theta^{\succeq}(i) = (i_1, i_2, \dots, i_k)$.

Lexicographic excellence

The *lexicographic excellence (lex-cel)* is the binary relation R_{le}^{\succeq} such that for all $\succeq \in \mathcal{R}(\mathcal{P}(N))$ and all $i, j \in N$:

$$i \mathbb{R}_{le}^{\succeq} j \Longleftrightarrow \theta^{\succeq}(i) \ge_L \theta^{\succeq}(j),$$

with \geq_L the lexicographic order.

Power relation

Selection the Most Relevant

> Elements Konieczny, Moretti, Ravier

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

≻

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

P

Lex-cel

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Why not the entire ranking?

> Difficulties computing the ranking

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Why not the entire ranking?

> Difficulties computing the ranking

Only interested in the winner(s)

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Coalitional Social Choice Function

> Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Coalitional Social Choice Function

Let $\mathcal{P}(N)$ denote the set of all possible subsets one can build from a given population *N*.

Let $\mathcal{R}(X)$ denote the set of rankings over a given set X.

Coalitional Social Choice Function A coalitional social choice function is a map

 $B: \mathcal{R}(\mathcal{P}(N)) \to \mathcal{P}(N)$

which associates to each power relation $\succeq \in \mathcal{R}(\mathcal{P}(N))$ a non-empty subset $B(\succeq) \in \mathcal{P}(N)$ which is interpreted as the set of *winners* in \succeq .

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Desirable properties

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

All-Indifferent-All-Winners

Axiom 1 (AIAW)

Consider a power relation $\succeq \in \mathcal{R}$ such that for all $S, T \in \mathcal{P}(N)$, it holds that

$$S \sim T,$$

then a coalitional social choice function *B* satisfies the property All-Indifferent-All-Winners if it holds that $B(\succeq) = N$.

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

All-Indifferent-All-Winners

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

All-Indifferent-All-Winners

> Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Monotonicity for Winners

Axiom 2 (MW)

Consider two power relations $\succeq, \supseteq \in \mathcal{R}(\mathcal{P}(N))$ and their respective quotient orders \succ and \Box such that:

- $\Sigma_1 \succ \Sigma_2 \succ \cdots \succ \Sigma_l$,
- $\Sigma_1 \sqsupset \Sigma_2 \sqsupset \cdots \sqsupset \Sigma_{I-1} \sqsupset \Sigma \sqsupset \Sigma_I \setminus \Sigma$,
- with $\Sigma \subseteq \Sigma_I$.

Take a coalitional social choice function *B* and let $T \subseteq B(\succeq)$ be the set of most represented winners over Σ , *i.e.*

$$T = \{i \in B(\succeq) : i_{\Sigma} \geq j_{\Sigma} \forall j \in B(\succeq)\}.$$

We say that *B* satisfies the Monotonicity for Winners property if it holds that

$$T \subseteq B(\sqsupseteq).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Monotonicity for Winners

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Monotonicity for Winners

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Monotonicity for Winners

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Monotonicity for Winners

\subseteq B (\square)

Dominance

Axiom 3 (D)

Selection the Most Relevant

> Elements Konieczny, Moretti. **Bavier**

& Viappiani

Desirable properties

Consider two power relations $\succ, \exists \in \mathcal{R}(\mathcal{P}(N))$ and their respective quotient orders \succ and \Box such that:

- $\Sigma_1 \succ \Sigma_2 \succ \cdots \succ \Sigma_l$,
- $\Sigma_1 \supseteq \Sigma_2 \supseteq \cdots \supseteq \Sigma_{l-1} \supseteq \Sigma \supseteq \Sigma_l \setminus \Sigma$,
- with $\Sigma \subset \Sigma_l$.

Take a cscf B and let $L \subseteq B(\succeq)$ be the set of winners that are strictly less represented than other winners over Σ , *i.e.*

$$L = \{j \in B(\succeq) : \exists i \in B(\succeq) \text{ with } i_{\Sigma} > j_{\Sigma}\}.$$

We say that *B* satisfies the *dominance* property if it holds that

$$B(\supseteq) \subseteq N \setminus L.$$

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Dominance

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Dominance

・ロ・・四・・川・・川・・ (日・・(日・)

22/30

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Dominance

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Dominance

\subseteq B (\square)

4 ロ ト 4 回 ト 4 直 ト 4 直 ト 直 の Q ()
24/30

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Dominance

∉ B (⊐)

・ロト (部)、(音)、(音)、音)の(で 24/30

> Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Independence for Losers from the Worst Set

Axiom 4 (ILWS)

A cscf *B* satisfies the property of Independence for Losers from the Worst Set if $\forall \succeq \in \mathcal{R}(\mathcal{P}(N))$ with the associated quotient order \succ such that

$$\Sigma_1 \succ \Sigma_2 \succ \cdots \succ \Sigma_l$$

and $i \in N$ such that $i \notin B(\succeq)$, then for any partition T_1, \ldots, T_m of Σ_I and for any power relation $\exists \in \mathcal{R}(\mathcal{P}(N))$ with the associated quotient order \exists such that

$$\Sigma_1 \supseteq \Sigma_2 \supseteq \cdots \supseteq \Sigma_{l-1} \supseteq T_1 \supseteq \cdots \supseteq T_m,$$

it holds that $i \notin B(\supseteq)$.

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Lex-cel-based coalitional social choice function

<ロ><20><20><20><20><20</2></2>

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

The *lex-cel* coalitional social choice function

Lex-cel coalitional social choice function Let $\succeq \in \mathcal{R}(\mathcal{P}(N))$. The *lex-cel coalitional social choice function* is the map $B_{le} : \mathcal{R}(\mathcal{P}(N)) \to \mathcal{P}(N)$ such that for all $\succeq \in \mathcal{R}(\mathcal{P}(N))$:

$$\mathcal{B}_{le}(\succeq) = \{i \in \mathcal{N} : i \; \mathcal{R}_{le}^{\succeq} \; j, \forall j \in \mathcal{N}\}.$$

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

The *lex-cel* cscf and our presented axioms

Proposition

The All-Indifferent-All-Winners, Monotonicity for Winners, Dominance and Independence for Losers from the Worst Set axioms are logically independent.

Theorem

The coalitional social choice function B_{le} is the unique solution fulfilling Axioms AIAW, M, D and ILWS.

Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Conclusion and perspectives

> Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Conclusion and perspectives

Four logically independent axioms representing desirable properties.

We have introduced the *lex-cel* coalitional social choice function and proven that it is the only one to satisfy these four axioms.

> Konieczny, Moretti, Ravier & Viappiani

Introduction

Coalitional Social Choice Function

Desirable properties

Lex-cel-based coalitional social choice function

Conclusion and perspectives

Conclusion and perspectives

Four logically independent axioms representing desirable properties.

We have introduced the *lex-cel* coalitional social choice function and proven that it is the only one to satisfy these four axioms.

More uncertainty: what about given an incomplete order over the subsets of our population ?