Surfing the waves of explanation

Silja Renooij

Universiteit Utrecht

The goal of explainable AI

Wikipedia:

Explainable Al (XAI) refers to methods and techniques in the application of artificial intelligence technology (Al) such that the results of the solution can be understood by human experts.

[^0]
Explanations: a social science perspective

It is important to realise that [Miller, 2019]:
(1) explanations are contrastive: "why P instead of Q?"
(2) explanations are selected (in a biased manner): people include just one or two relevant causes as explanation; this selection is influenced by cognitive biases.
3 explanations do not refer to probabilities or statistical relationships; the most likely explanation is not always the best explanation.
4 explanations are social: presented as part of a conversation or interaction.

Miller [2019]:
For over two decades, cognitive psychologists and scientists have investigated how people generate explanations and how they evaluate their quality.

When did AI start generating and evaluating explanations?

XAI output past decade

Waves of AI output

Al: https://www.finextra.com/the-long-read/62/
what-should-be-taken-into-account-if-artificial-intelligence-is-to-be-regulated

Waves of AI and XAI output

Al: https://www.finextra.com/the-long-read/62/
what-should-be-taken-into-account-if-artificial-intelligence-is-to-be-regulated
XAI: 2019 DARPA report Explanation in Human-AI Systems: A Literature Meta-Review Synopsis of Key Ideas and Publications and Bibliography for Explainable AI

Waves of AI and XAI output

Al: https://www.finextra.com/the-long-read/62/
what-should-be-taken-into-account-if-artificial-intelligence-is-to-be-regulated
XAI: 2019 DARPA report Explanation in Human-AI Systems: A Literature Meta-Review Synopsis of Key Ideas and Publications and Bibliography for Explainable AI

Bayesian network (BN)

- late 1980s: introduced by J. Pearl;
- model \mathcal{B} of discrete joint probability distribution $P(\boldsymbol{V})$;
- qualitative part: intuitive (?) DAG G of independence relation;
- quantitative part: distributions $P\left(V_{i} \mid p a_{G}\left(V_{i}\right)\right)$;

$$
\begin{array}{lll}
P(b \mid m c)=0.20 & P(m c)= & 0.20 \\
P(b \mid \neg m c)=0.05 & & 0.80 \\
& P(c \mid b \wedge i s c)= & 0.80 \\
P(s h \mid b)=0.80 & P(c \mid \neg b \wedge i s c)= & 0.80 \\
P(s h \mid \neg b)=0.60 & P(c \mid b \wedge \neg i s c)= & 0.80 \\
& P(c \mid \neg b \wedge \neg i s c)=0.02 \\
P(c t \mid b)= & 0.95 & \\
P(c t \mid \neg b)=0.10 & P(i s c \mid m c)= & 0.80 \\
& P(i s c \mid \neg m c)= & 0.20
\end{array}
$$

- can be handcrafted or learned from data;
- $P(\boldsymbol{V})=\prod_{i=1}^{n} P\left(V_{i} \mid p a_{G}\left(V_{i}\right)\right)$

Reasoning in Bayesian networks: queries

Let $\boldsymbol{V}=\boldsymbol{H} \cup \boldsymbol{I} \cup \boldsymbol{E}$ be composed of three disjoint subsets.
Typical queries posed to a BN are:
MAP/MPE: $\arg \max _{\boldsymbol{h}} P(\boldsymbol{H}=\boldsymbol{h} \mid \boldsymbol{E}=\boldsymbol{e})$
(classification)
Inference: $P(\boldsymbol{H}=\boldsymbol{h} \mid \boldsymbol{E}=\boldsymbol{e})$
(What if?)
(typically H is a single V_{i})
where e and h denote value assignments to $\boldsymbol{E}, \boldsymbol{H}$.

Explaining Bayesian networks

- 1992: Explanation in Bayesian belief networks (Stanford PhD thesis by H.J. Suermondt)
- 2001: A Review of Explanation Methods for Bayesian Networks (KER paper by C. Lacave and F.J. Díez)

[^1]
Explanation of the model: graph and visual priors

BN: The Native Fish Bayesian networks (A. Nicholson, O. Woodberry, Ch. Twardy, Bayesian Intelligence Tech.Rep. 2010)

Beware of the DAG!

- DAG suggests causal interpretation;
- DAGs in the same Markov equivalence class represent the same probabilistic independences

$\Longrightarrow B N s$ with different graphs and different 'causal' interpretation can represent same $P(\boldsymbol{V})$!

Causal anecdote

BNs: Bayesian network models for the management of ventilator-associated pneumonia (S. Visscher, PhD Thesis, UU, 2008)

Intermezzo: general overview of my research

Analysis for explaining decisions

Derks \& De Waal (2021):
Explanation of decisions supports the following questions:

- "Given the available information, are we ready to make a decision?", and if not
- "What additional information do we require to make an informed decision?"
using threshold-based solutions:
- SDP: probability that same decision is made upon obtaining additional evidence
- sensitivity analysis: to what extent does the outcome depend on the specified conditional probabilities?

Construction: using monotonicity \& idioms

QPNs, ~1990 -

idioms, ~2000 -

QPN: Qualitative approaches to quantifying probabilistic networks (S. Renooij, PhD Thesis, UU, 2001) Narrative idiom: When stories and numbers meet in court (C.S. Vlek, PhD Thesis, RUG, 2016)

Construction: probability elicitation

Eliciting $P($ Conjunctivitis $=$ yes \mid Mucositis $=$ no $)$:

Scale: Qualitative approaches to quantifying probabilistic networks (S. Renooij, PhD Thesis, UU, 2001)

Explanation of reasoning: monotonicity (visual)

Img: Explanation of Bayesian Networks and Influence Diagrams in Elvira (C. Lacave, M. Luque, F.J. Díez, IEEE Trans., 2007)

Explanation of reasoning: scenarios (textual)

1991:

```
The following scenario(s) are
compatible with cold:
A. Cold and no cat hence no
    allergy 0.47
    Other less probable
    scenario(s) 0.06
The following scenario(s) are
incompatible with cold:
B. No Cold and cat causing
    allergy0.48
Scenario A is about as likely as
scenario B (0.47/0.48)
because cold in A is a great deal
less likely than no cold in B
(0.08/0.92),
although no cat in A is a great deal
more likely than cat in B (0.9/0.1).
Therefore cold is slightly more likely than not ( \(\mathrm{p}=0.52\) ).
```


2016:

Scenario 2: Sylvia and Tom committed the burglary. (prior probability: 0.0001 , posterior probability: 0.2326)

Scenario: Sylvia and Tom committed the burglary: Sylvia and Tom had debts and a window was already broken. Then, Sylvia and Tom climbed through the window. Then, Tom stole a laptop.

Scenario 2 is complete and consistent. It contains the evidential gap 'Sylvia and Tom had debts' and the supported implausible element 'A window was already broken'.
Evidence for and against scenario 2:

* Broken window: moderate evidence to support scenario 2.
* Statement: Tom sold laptop: moderate evidence to support scenario 2.
* Testimony: window was already broken: weak evidence to support scenario 2.
* All evidence combined: very strong evidence to support scenario 2.

1991: Qualitative propagation and scenario-based approaches to explanation of probabilistic reasoning (M. Henrion, M.J. Druzdzel, UAI)
2016: When stories and numbers meet in court (C.S. Vlek, PhD Thesis, RUG)

Explanation of reasoning: relevance of evidence

2015:

1997:

```
Before presentingrarrevidence, the probability of GALLSTONBS
being present is 0.128
The following pieces of evidence are considered important (in
order of importance):
- Presence of GUARDING results in a posterior probability of 0.175 for GALLSTONES .
- AGE of 41 reaults in a posterior probability of 0.172 for GALLSTONES.
Their influence flows along the following paths:
- GUARDING is caused by CHOLECYSTITIS, which is caused by GALLSTONES.
- AGE influences GALLSTONES
Presentation of the evidence results in a posterior probability of 0.227 for the presence of GALLSTONES.
```

The value scirrheus of node Shape is certain ($\mathrm{P}=1.00$),
We were able to construct four arguments based on the evidence associated with the value scirrheus for node Shape (\mathbf{S}) The arguments are ordered by how influential they are tor the value of the node Shape (\mathbf{S}

- Argument 1: Node Endosono-mediast has value no

Node Bronchoscopy has value no
Node Lapa-diagragm has value no Node CT-organs has value none Node X-fistula has value no Node CT-liver has value no Node X-lungs has value no Node CT-lungs has value no Node Endosono-wall has value T3

- Argument 2 Node Gastro-shape has value scirrheus Node Gastro-circumf has value circulair Node Gastro-length has value $5<=x<10$ Node Weightloss has value $x<10 \%$ Node Endosono-wall has value T3 Node Endosono-truncus has value non-determ Node Endosono-loco has value yes Node Gastro-necrosis has value no Node X-fistula has value no
Node Endosono-mediast has value no Node Gastro-location has value distal
- Argument 3 : Node Gastro-shape has value scirrheus

Argument 4 Node X-fistula has value no
Node Gastro-necrosis has value no

1997: BANTER: a Bayesian network tutoring shell (P. Haddawy, J. Jacobson, Ch.E. Kahn Jr., Al in Med.)
2015: Explaining the reasoning of Bayesian networks with intermediate nodes and clusters (J. van Leersum, MSc Thesis, UU)

Explanation of reasoning: argument graphs

2011: On extracting arguments from Bayesian network representations of evidential reasoning (J. Keppens, ICAIL) 2017: Designing and understanding forensic Bayesian networks using argumentation (S.T. Timmer, PhD Thesis, UU)

Persuasive contrastive explanation (explanation of reasoning: classification)

Consider evidence e $\in \Omega(\boldsymbol{E})$, resulting in output t instead of t^{\prime}.
A persuasive contrastive explanation combines

- sufficient explanation s
- minimal sub-configuration of evidence e that suffices for concluding t, regardless of the values for $\boldsymbol{E} \backslash \boldsymbol{S}$
" evidence s would already be enough to conclude t "
- counterfactual explanation c
- minimal sub-configuration of unobserved values
$\overline{\mathrm{e}} \in \Omega(\boldsymbol{E})$ that in combination with the remaining evidence for $\boldsymbol{E} \backslash \boldsymbol{C}$ suffices to conclude t^{\prime}
" t^{\prime} would result if the evidence contains c instead "

Computing Explanations

- \# of potential sufficient explanations: $2^{|E|}$
- \# of potential counterfactual explanations: $\prod_{k=1}^{|E|}\left|\Omega\left(E_{k}\right)\right|-1$
- we need to compute the outcome for the associated value-assignments from the network
- in Bayesian networks, probabilistic inference is NP-hard....

Various properties of these explanations allow for their computation

- using a breadth first search: BFS-SFX-CFX
- on a dynamically annotated subset lattice

Explanation lattice I

Lattice $\mathcal{L}=(\mathcal{P}(\boldsymbol{E}), \subseteq)$ and each element $\boldsymbol{S} \subseteq \boldsymbol{E}$ annotated with:

$$
\begin{array}{lll}
\text { (1) } \mathrm{s} \subseteq \mathrm{e} & \\
\text { e.g. } & \mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1} & \text { for } \boldsymbol{S}=\{X, Y, Z\} \\
& \mathrm{x}_{1} \mathrm{z}_{1} & \text { for } \boldsymbol{S}=\{X, Z\} \\
& \mathrm{y}_{1} & \text { for } \boldsymbol{S}=\{Y\}
\end{array}
$$

s is potentially a sufficient explanation; (s should be as small as possible)

Explanation lattice II

Lattice $\mathcal{L}=(\mathcal{P}(\boldsymbol{E}), \subseteq)$ and each element $\boldsymbol{S} \subseteq \boldsymbol{E}$ annotated with:

2 all pairs (c, $\left.t^{*}\right)$ with $\mathbf{c} \in \Omega(\boldsymbol{E} \backslash \boldsymbol{S})$, $\mathbf{c} \subseteq \overline{\mathrm{e}}$, and t^{*} is output for input sc

$$
\begin{aligned}
& \text { e.g. }\left(\mathrm{z}_{2}, t^{\prime}\right),\left(\mathrm{z}_{3}, t\right) \text { for } \boldsymbol{S}=\{X, Y\} \\
& \left(\mathrm{x}_{2}, t^{\prime \prime}\right) \quad \text { for } S=\{Y, Z\} \\
& \text { (} \left.\mathrm{x}_{2} \mathrm{y}_{2}, \mathrm{unkn}\right) \text { for } S=\{Z\}
\end{aligned}
$$

c is potentially a counterfactual explanation;
 (c should be as small as possible)

Explanation lattice III

Lattice $\mathcal{L}=(\mathcal{P}(\boldsymbol{E}), \subseteq)$ and each element $\boldsymbol{S} \subseteq \boldsymbol{E}$ annotated with:

$$
\begin{aligned}
& 3 \text { 3 } l_{S} \in\{\text { true, exp, oth }\} \\
& \text { - true: all } t^{*} \text { in }\left(\mathbf{c}, t^{*}\right) \text { are } t \\
& \quad \Rightarrow \text { cue for continuing SFX } \\
& \text { - exp: all } t^{*} \text { are } t^{\prime} \\
& \quad \Rightarrow \text { cue for stopping CFX } \\
& \text { - oth: } t^{*} \text { mix of } t, t^{\prime}, t^{\prime \prime}, \ldots \\
& \quad \Rightarrow \text { cue for SFX and CFX }
\end{aligned}
$$

Initially all labels l_{S} are empty

Example

CHILD network (Spiegelhalter et al., 1993) implemented in Samlam (UCLA, AR Group)

Example: finding sufficient explanations

Sufficient explanation(s): $\left\{{ }^{\prime} H=\right.$ yes $\wedge X=$ oligaemic' $\}$

Example: finding counterfactual explanations

Counterfactual explanations:
$\{‘ X=$ Plethoric', ' $X=$ Normal $\wedge H=$ no', ' $X=$ Grd_Glass
$\wedge H=$ no', ' $X=$ Asy $/$ Patchy $\wedge H=$ no $\wedge O=<5$ ' $\}$

Explanation support: MAP-independence

Recall: MAP $h^{*}=\arg \max _{\boldsymbol{h}} P(\boldsymbol{H}=\boldsymbol{h} \mid \boldsymbol{E}=\boldsymbol{e})$.
h^{*} is MAP-independent of subset \boldsymbol{R} of intermediate variables, if for all $\boldsymbol{r} \in \Omega(\boldsymbol{R})$:
(Kwisthout, 2021)

$$
\underset{h^{\prime} \in \Omega(\boldsymbol{H})}{\arg \max _{1}} \operatorname{Pr}\left(h^{\prime} \wedge \boldsymbol{r} \mid \mathbf{e}\right)=h^{*}
$$

If $\operatorname{argmax} h^{\prime} \neq h^{*}$ for some r then

- r provides for a counterfactual;
- that contrasts outputs h^{*} and h^{\prime}.

Note that the explanation concerns the effects of possible future observations rather than current!

[^2]
Interactive explanation

S Based on the given evidence, what is your expected value for Acccident?
U I expect a moderate accident.
Based on the given evidence, it is found that severe is the most likely value for Accident.
Do you prefer understandable or convincing explanations for this finding?
U I prefer understandable explanations.
S We found the following sufficient and counterfactual explanations:
sufficient $\longrightarrow 1$. If only Age $=$ adolescent, Experience <3, Model $=$ old was observed severe would always be the most probable value for Accident regardless of the values for the other evidence. If $\mathrm{Model}=$ normal was observed instead of the actual values and all other values would stay the same, moderate would be the most probable value for Accident
2. If only Mileage $=2000$, Experience <3, Model $=$ old was observed severe would always be the most probable value for Accident regardless of the values for the other evidence.
[+ same counterfactual]

S Do you want to see more explanations?
U No.
S On what observation is your expectation for a moderate accident based?
U On the observation that I have a cautious driving style.
You probable have the right expectations of how E_{i} influences the target.
However, this influence was suppressed by the other observations.

Take home message

- explanations are more than ever necessary
- not everything needs explanation

- need to involve and interact with user more
- need to know what is technically possible
- effective explanations are not always accurate

The information in this presentation has been compiled with the utmost care, but no rights can be derived from its contents.

[^0]: Img: https://blog.global.fujitsu.com/fgb/2019-08-01/
 why-ai-got-the-answer-explainable-ai-showing-bases/

[^1]: 2021: A taxonomy of explainable Bayesian networks (I.P. Derks, A. de Waal)
 2022: Extending MAP-independence for Bayesian network explainability (E. Valero-Leal, P. Larrañaga, C. Bielza)

[^2]: Explainable Al using MAP-independence (J. Kwisthout, ECSQARU 2021)
 Relevance for Robust Bayesian Network MAP-Explanations (S. Renooij, PGM 2022)

