

Explaining robust classification through prime implicants

Hénoïk Willot, Sébastien Destercke & Khaled Belahcene

15th international conference on Scalable Uncertainty Management

[SUM22 – October 17-19th 2022](#page-41-0) 1

[Introduction](#page-1-0)

- ❍ [Classification](#page-2-0)
- ❍ [Prime implicant](#page-8-0)

• [Naive Credal Classifier \[3\]](#page-10-0)

- ❍ [General case](#page-11-0)
- ❍ [Prime implicants formulation](#page-24-0)
- ❍ [Computation](#page-35-0)

[Conclusion](#page-38-0)

Recommend : class $y \in \mathcal{Y} = \{y_1, \ldots y_m\}$ Features : $\mathscr{X}^{\mathcal{N}}$ = \prod *n* $i=1$ \mathscr{X}_I Discrete domains : $\mathscr{X}_i = \{x_i^1\}$ *i* ,...,*x ki i* } Observation : $\mathbf{x}^o \in \mathcal{X}^N$

Recommend : class $\mathbf{v} \in \mathcal{Y} = \{v_1, \dots, v_m\}$ Features : $\mathscr{X}^{\mathcal{N}}$ = \prod *n* $\prod_{i=1}$ \mathscr{X}_i Discrete domains : $\mathscr{X}_i = \{x_i^1\}$ *i* ,...,*x ki i* } Observation : $\mathbf{x}^o \in \mathcal{X}^N$

Crisp case : One probability distribution *p*

$$
\mathbf{y} \succeq_{\rho} \mathbf{y}' \text{ if } \rho(\mathbf{y}|\mathbf{x}^{\circ}) \ge p(\mathbf{y}'|\mathbf{x}^{\circ})
$$

⇒ Explanations by prime implicants are known

Credal case :

Probability distribution p replaced by convex sets of probabilities $\mathscr P$

Credal case :

Probability distribution p replaced by convex sets of probabilities $\mathscr P$

Robust classification :

Necessary recommendation **y** ≥ **y**['],

$$
\mathbf{y} \succeq_{\mathscr{P}} \mathbf{y}' \Leftrightarrow \forall \, \rho \in \mathscr{P}, \; \rho(\mathbf{y}|\mathbf{x}^{\circ}) \ge \rho(\mathbf{y}'|\mathbf{x}^{\circ}) \Leftrightarrow \inf_{\rho \in \mathscr{P}} \frac{\rho(\mathbf{y}|\mathbf{x}^{\circ})}{\rho(\mathbf{y}'|\mathbf{x}^{\circ})} \ge 1
$$

 \Rightarrow What happens to prime implicants in this case?

Introduction *Running example* **[1]**

Objective : predict an animal in $\mathscr{Y} = \{ \bullet, \bullet, \bullet, \bullet\}$ Features : 3 lengths :

- \bullet \mathscr{X}_1 : ears
- \bullet \mathscr{X}_{2} : tail
- \mathscr{X}_3 : hair

Domains : $\mathcal{X}_i = \{Long, Medium, Short\}$ Observation : **x** *^o* = (*Long*,*Short*,*Long*)

Introduction *Running example* **[1]**

Observation : **x** *^o* = (*Long*,*Short*,*Long*) Modèle :

- $p(\mathbf{P}|\mathbf{x}^{\circ}) \in [0.30, 0.42]$
- $p(\cdot|\mathbf{x}^{\circ}) \in [0.03, 0.15]$
- $p(\blacksquare|\mathbf{x}^{\circ}) \in [0.06, 0.18]$
- $p(\mathbb{X}|\mathbf{x}^{\circ}) \in [0.18, 0.42]$

$$
\mathbf{\nabla} \succeq_{\mathcal{P}} \mathbf{\nabla} \operatorname{because} \inf_{\rho \in \mathcal{P}} \frac{\rho(\mathbf{\nabla} \mathbf{x}^{\circ})}{\rho(\mathbf{A} \mathbf{x}^{\circ})} = \frac{0.30}{0.18} \ge 1
$$
\n
$$
\mathbf{\nabla} \text{ and } \mathbf{\nabla} \text{ indifferent :}
$$
\n
$$
\inf_{\rho \in \mathcal{P}} \frac{\rho(\mathbf{\nabla} \mathbf{x}^{\circ})}{\rho(\mathbf{\nabla} \mathbf{x}^{\circ})} = \frac{0.30}{0.42} < 1 \text{ et } \inf_{\rho \in \mathcal{P}} \frac{\rho(\mathbf{\nabla} \mathbf{x}^{\circ})}{\rho(\mathbf{\nabla} \mathbf{x}^{\circ})} = \frac{0.18}{0.42} < 1
$$

Introduction Implicant

E ⊆ *N*, as a subset of feature indices, is an implicant of decision **y** ≥ **y**′ ∶

$$
\phi(E) = \inf_{\substack{p \in \mathcal{P} \\ x_{-E} \in \mathcal{X}^{-E}}} \frac{p(\mathbf{y} | \mathbf{x}_{E}^{o}, x_{-E})}{p(\mathbf{y}' | \mathbf{x}_{E}^{o}, x_{-E})} \ge 1
$$

i.e. observe $\mathbf{x}_{\scriptscriptstyle{F}}^o$ $\frac{\partial}{\partial E}$ is sufficient to conclude $\mathbf{y} \succeq_{\mathcal{P}} \mathbf{y}'$ no matter the values on other attributes *x*_−*∈* \mathcal{X}^{-E}

Introduction Prime implicant

E ⊆ *N* is a *prime* implicant if

```
\forall i \in E, \ \phi(E \setminus \{i\}) < 1
```
i.e. E is minimal

For one decision, it might exists different prime implicants with different cardinals !

● [Introduction](#page-1-0)

- ❍ [Classification](#page-2-0)
- ❍ [Prime implicant](#page-8-0)

[Naive Credal Classifier \[3\]](#page-10-0)

- ❍ [General case](#page-11-0)
- ❍ [Prime implicants formulation](#page-24-0)
- ❍ [Computation](#page-35-0)

[Conclusion](#page-38-0)

Definition

Bayes theorem :

$$
p(\mathbf{y}|\mathbf{x}^{\circ}) = \frac{p(\mathbf{x}^{\circ}|\mathbf{y}) \times p_{\mathcal{Y}}(\mathbf{y})}{p(\mathbf{x}^{\circ})}
$$

Independence hypothesis (Naive Bayes) :

$$
p(\mathbf{y}|\mathbf{x}^o) = \frac{\prod_{i=1}^n p_i(\mathbf{x}_i^o|\mathbf{y}) \times p_{\mathcal{Y}}(\mathbf{y})}{p(\mathbf{x}^o)}
$$

Features are independent, given the class

heudiasyc

Definition

Bayes theorem :

$$
p(\mathbf{y}|\mathbf{x}^{\circ}) = \frac{p(\mathbf{x}^{\circ}|\mathbf{y}) \times p_{\mathcal{Y}}(\mathbf{y})}{p(\mathbf{x}^{\circ})}
$$

Independence hypothesis (Naive Bayes) :

$$
p(\mathbf{y}|\mathbf{x}^o) = \frac{\prod_{i=1}^n p_i(\mathbf{x}_i^o|\mathbf{y}) \times p_{\mathcal{Y}}(\mathbf{y})}{p(\mathbf{x}^o)}
$$

Features are independent, given the class We can rewrite $\phi(E)$:

$$
\phi(E) = \inf_{\substack{x_{-E} \in \mathcal{X}^{-E} \\ p_{y} \in \mathcal{P}_{x}} \atop p_i \in \mathcal{P}_{x_i}} \frac{p_{\mathcal{Y}}(\mathbf{y})}{p_{\mathcal{Y}}(\mathbf{y}')} \prod_{\substack{i \in E \\ l \text{ (upplied by } p_i \in \mathcal{P}_{x_i}}} \frac{p_i(\mathbf{x}_i \mid \mathbf{y})}{p_i(\mathbf{x}_i \mid \mathbf{y}') } \prod_{\substack{i \in -E \\ l \text{ (upological part)}} \frac{p_i(x_i \mid \mathbf{y})}{p_i(\mathbf{x}_i \mid \mathbf{y}') } }
$$

Convex probabilities

As $\mathscr{P}_{\mathscr{Y}}$ and $\mathscr{P}_{\mathscr{X}_i}$ are convex and $p_i(\cdot|\mathbf{y}')$ independent of $p_j(\cdot|\mathbf{y})$ if **y** \neq **y**^{\prime} or *i* \neq *j* :

$$
\phi(E) = \inf_{x_{-E} \in \mathcal{X}^{-E}} \frac{\underline{p}_{\mathcal{Y}}(\mathbf{y})}{\overline{p}_{\mathcal{Y}}(\mathbf{y}')}\prod_{i \in E} \frac{\underline{p}_{i}(\mathbf{x}_{i}^{o}|\mathbf{y})}{\overline{p}_{i}(\mathbf{x}_{i}^{o}|\mathbf{y}')}\prod_{i \in -E} \frac{\underline{p}_{i}(x_{i}|\mathbf{y})}{\overline{p}_{i}(x_{i}|\mathbf{y}')}\n\tag{1}
$$

with *p* and \overline{p} lower and upper bounds of $p \in \mathcal{P}$

Running example **[2] Data**

Data are obtained with the *Imprecise Dirichlet Model* [\[1\]](#page-41-2) Idea : build a cautious interval around *p* using a number of fictive observations *s*

$$
p(x) = \frac{n_x}{N} \stackrel{\text{IDM}}{\Rightarrow} p(x) \in \left[\frac{n_x}{N+s}, \frac{n_x+s}{N+s}\right]
$$

To avoid null probabilities, we add a small regularization

Recherche

$$
\begin{array}{cc}\n\bullet & \bullet & \bullet \\
[25,26] & [29,31] & [20,22] & [25,26]\n\end{array}
$$

x *^o* = (*Long*,*Short*,*Long*)

$p(x_1 y)$	1	2		
L	[33,40]	[2,8]	[10,19]	[58,65]
M	[30,37]	[55,61]	[66,75]	[26,33]
S	[30,37]	[37,43]	[15,23]	[9,16]
$p(x_2 y)$	1	1		
L	[54,61]	[31,37]	[66,75]	[2,9]
M	[23,30]	[61,67]	[23,32]	[30,37]
S	[16,23]	[2,8]	[2,10]	[61,69]
$p(x_3 y)$	1	1		
L	[40,47]	[46,52]	[23,32]	[2,9]
M	[26,33]	[17,22]	[10,19]	[19,26]
S	[26,33]	[31,37]	[58,66]	[72,79]

$$
\begin{array}{cc}\n\bullet & \bullet & \bullet \\
[25,26] & [29,31] & [20,22] & [25,26]\n\end{array}
$$

x *^o* = (*Long*,*Short*,*Long*) \mathbb{Q} $\succeq_{\mathcal{P}} \mathbb{Z}$?

$$
\begin{array}{cc}\n\bullet & \bullet & \bullet \\
[25,26] & [29,31] & [20,22] & [25,26]\n\end{array}
$$

$$
\mathbf{x}^o = (\text{Long}, \text{Short}, \text{Long})
$$

$$
\mathbf{P} \succeq_{\mathcal{P}} \mathbf{P}
$$
?

$$
\begin{array}{l} \phi(N)= \\ \frac{\rho_{\mathcal{Y}}(\mathbf{y})}{\overline{\rho}_{\mathcal{Y}}(\mathbf{y}')} \times \frac{\rho_{1}(\mathbf{x}_{1}^{o}|\mathbf{y})}{\overline{\rho}_{1}(\mathbf{x}_{1}^{o}|\mathbf{y}')} \times \frac{\rho_{2}(\mathbf{x}_{2}^{o}|\mathbf{y})}{\overline{\rho}_{2}(\mathbf{x}_{2}^{o}|\mathbf{y}')} \times \frac{\rho_{3}(\mathbf{x}_{3}^{o}|\mathbf{y})}{\overline{\rho}_{3}(\mathbf{x}_{3}^{o}|\mathbf{y}')}\end{array}
$$

$$
\begin{array}{cc}\n\bullet & \bullet & \bullet \\
[25,26] & [29,31] & [20,22] & [25,26]\n\end{array}
$$

$$
\mathbf{x}^o = (\text{Long}, \text{Short}, \text{Long})
$$

$$
\mathbf{P} \succeq_{\mathcal{P}} \mathbf{P}
$$
?

$$
\begin{aligned} \n\phi(N) &= \\ \n\frac{p_{\mathcal{Y}}(\mathbf{y})}{\overline{p}_{\mathcal{Y}}(\mathbf{y}')} &\times \frac{p_1(\mathbf{x}_1^o|\mathbf{y})}{\overline{p}_1(\mathbf{x}_1^o|\mathbf{y}')} \times \frac{p_2(\mathbf{x}_2^o|\mathbf{y})}{\overline{p}_2(\mathbf{x}_2^o|\mathbf{y}')} \times \frac{p_3(\mathbf{x}_3^o|\mathbf{y})}{\overline{p}_3(\mathbf{x}_3^o|\mathbf{y}')} \\ \n&= \frac{0.25}{0.22} \n\end{aligned}
$$

$$
\begin{array}{cc}\n\bullet & \bullet & \bullet \\
[25,26] & [29,31] & [20,22] & [25,26]\n\end{array}
$$

$$
\mathbf{x}^o = (\text{Long}, \text{Short}, \text{Long})
$$

$$
\mathbf{P} \succeq_{\mathcal{P}} \mathbf{P}
$$
?

$$
\begin{aligned} \n\phi(N) &= \\ \n\frac{p_{\mathcal{Y}}(\mathbf{y})}{\overline{p}_{\mathcal{Y}}(\mathbf{y}')} &\times \frac{p_1(\mathbf{x}_1^o|\mathbf{y})}{\overline{p}_1(\mathbf{x}_1^o|\mathbf{y}')} \times \frac{p_2(\mathbf{x}_2^o|\mathbf{y})}{\overline{p}_2(\mathbf{x}_2^o|\mathbf{y}')} \times \frac{p_3(\mathbf{x}_3^o|\mathbf{y})}{\overline{p}_3(\mathbf{x}_3^o|\mathbf{y}')}\\ \n&= \frac{0.25}{0.22} \times \frac{0.33}{0.19} \n\end{aligned}
$$

$$
\begin{array}{cc}\n\bullet & \bullet & \bullet \\
[25,26] & [29,31] & [20,22] & [25,26]\n\end{array}
$$

$$
\mathbf{x}^o = (\text{Long}, \text{Short}, \text{Long})
$$

$$
\mathbf{P} \succeq_{\mathcal{P}} \mathbf{P}
$$
?

$$
\begin{aligned} \n\phi(N) &= \\ \n\frac{p_{\mathcal{Y}}(\mathbf{y})}{\overline{p}_{\mathcal{Y}}(\mathbf{y}')} &\times \frac{p_1(\mathbf{x}_1^o|\mathbf{y})}{\overline{p}_1(\mathbf{x}_1^o|\mathbf{y}')} \times \frac{p_2(\mathbf{x}_2^o|\mathbf{y})}{\overline{p}_2(\mathbf{x}_2^o|\mathbf{y}')} \times \frac{p_3(\mathbf{x}_3^o|\mathbf{y})}{\overline{p}_3(\mathbf{x}_3^o|\mathbf{y}')}\\ \n&= \frac{0.25}{0.22} \times \frac{0.33}{0.19} \times \frac{0.16}{0.10} \n\end{aligned}
$$

$$
\begin{array}{cc}\n\bullet & \bullet & \bullet \\
[25,26] & [29,31] & [20,22] & [25,26]\n\end{array}
$$

$$
\mathbf{x}^o = (\text{Long}, \text{Short}, \text{Long})
$$

$$
\mathbf{P} \succeq_{\mathcal{P}} \mathbf{P}
$$
?

$$
\begin{aligned} \n\phi(N) &= \\ \n\frac{p_{\mathcal{Y}}(\mathbf{y})}{\overline{p}_{\mathcal{Y}}(\mathbf{y}')} &\times \frac{p_1(\mathbf{x}_1^o|\mathbf{y})}{\overline{p}_1(\mathbf{x}_1^o|\mathbf{y}')} \times \frac{p_2(\mathbf{x}_2^o|\mathbf{y})}{\overline{p}_2(\mathbf{x}_2^o|\mathbf{y}')} \times \frac{p_3(\mathbf{x}_3^o|\mathbf{y})}{\overline{p}_3(\mathbf{x}_3^o|\mathbf{y}')} \\ \n&= \frac{0.25}{0.22} \times \frac{0.33}{0.19} \times \frac{0.16}{0.10} \times \frac{0.40}{0.32} \n\end{aligned}
$$

$$
\begin{array}{cc}\n\bullet & \bullet & \bullet \\
[25,26] & [29,31] & [20,22] & [25,26]\n\end{array}
$$

$$
\mathbf{x}^o = (\text{Long}, \text{Short}, \text{Long})
$$

$$
\mathbf{P} \succeq_{\mathcal{P}} \mathbf{P}
$$
?

$$
\begin{aligned} \n\phi(N) &= \\ \n\frac{p_{\mathcal{Y}}(\mathbf{y})}{\overline{p}_{\mathcal{Y}}(\mathbf{y}')} \times \frac{p_1(\mathbf{x}_1^o|\mathbf{y})}{\overline{p}_1(\mathbf{x}_1^o|\mathbf{y}')} \times \frac{p_2(\mathbf{x}_2^o|\mathbf{y})}{\overline{p}_2(\mathbf{x}_2^o|\mathbf{y}')} \times \frac{p_3(\mathbf{x}_3^o|\mathbf{y})}{\overline{p}_3(\mathbf{x}_3^o|\mathbf{y}')} \\ \n&= \frac{0.25}{0.22} \times \frac{0.33}{0.19} \times \frac{0.16}{0.10} \times \frac{0.40}{0.32} > 1 \n\end{aligned}
$$

Independence of the adversary

Equation [\(1\)](#page-0-1) defines the adversarial part *x*−*^E* :

$$
\phi(E) = \inf_{x_{-E} \in \mathcal{X}^{-E}} \frac{\underline{p}_{\mathcal{Y}}(\mathbf{y})}{\overline{p}_{\mathcal{Y}}(\mathbf{y}')} \prod_{i \in E} \frac{\underline{p}_{i}(\mathbf{x}_{i}^{o}|\mathbf{y})}{\overline{p}_{i}(\mathbf{x}_{i}^{o}|\mathbf{y}')} \prod_{i \in -E} \frac{\underline{p}_{i}(x_{i}|\mathbf{y})}{\overline{p}_{i}(x_{i}|\mathbf{y}')}
$$
\n
$$
\overline{\text{Implicit part }}
$$
\n
$$
\text{Adversarial part}
$$

Independence of the adversary

Each *x a i* ∈ *x*−*^E* is :

- 1. independent of \mathbf{x}_i^0 *i*
- 2. independent of every $j \in \mathbb{N} \setminus \{i\}$

Therefore, ∃ a **unique** "worst adversary" *x^a for y ≥ y′* :

$$
x^{a} \in \mathcal{X}^{N}: \forall i \in N \ x_{i}^{a} = \arg\min_{x_{i}^{k} \in \mathcal{X}_{i}} \frac{\underline{p}_{i}(x_{i}^{k}|\mathbf{y})}{\overline{p}_{i}(x_{i}^{k}|\mathbf{y}')}
$$

Independence of the adversary

Each *x a i* ∈ *x*−*^E* is :

- 1. independent of \mathbf{x}_i^0 *i*
- 2. independent of every $j \in \mathbb{N} \setminus \{i\}$

Therefore, ∃ a **unique** "worst adversary" *x^a for y ≥ y′* :

$$
x^{a} \in \mathcal{X}^{N}: \forall i \in N \ x_{i}^{a} = \arg \min_{x_{i}^{k} \in \mathcal{X}_{i}} \frac{\underline{p}_{i}(x_{i}^{k}|\mathbf{y})}{\overline{p}_{i}(x_{i}^{k}|\mathbf{y}')}
$$

Let

$$
C = \log \phi(\emptyset) = \log \left(\frac{p_{\mathcal{Y}}(\mathbf{y})}{\overline{\rho}_{\mathcal{Y}}(\mathbf{y}')} \prod_{i \in N} \frac{p_i(x_i^a | \mathbf{y})}{\overline{\rho}_i(x_i^a | \mathbf{y}')} \right)
$$

$$
[25,26] [29,31] [20,22] [25,26]
$$

 $\mathbb{P}_{\geq_{\mathscr{P}}}$ a

$$
x_1^a = \arg\min\{\frac{0.33}{0.19}, \frac{0.30}{0.75}, \frac{0.30}{0.23}\} = M
$$

$$
[25,26] [29,31] [20,22] [25,26]
$$

 $\mathbb{P}_{\geq_{\mathscr{P}}}$ a

$$
x_1^a = \arg\min\{\frac{0.33}{0.19}, \frac{0.30}{0.75}, \frac{0.30}{0.23}\} = M
$$

$$
x_2^a = \arg\min\{\frac{0.54}{0.75}, \frac{0.23}{0.32}, \frac{0.16}{0.10}\} = M
$$

$$
[25,26] [29,31] [20,22] [25,26]
$$

$\mathbb{F}_{2\mathscr{P}}$

 $x_1^a = \arg \min \{ \frac{0.33}{0.19}, \frac{0.30}{0.75}, \frac{0.30}{0.23} \} = M$ x_2^a = arg min { $\frac{0.54}{0.75}$, $\frac{0.23}{0.32}$, $\frac{0.16}{0.10}$ } = *M* x_3^a = arg min { $\frac{0.40}{0.32}$, $\frac{0.26}{0.19}$, $\frac{0.26}{0.66}$ } = *S*

$\mathbb{P}_{\geq_{\mathscr{P}}}$ a

$$
C = \log \left(\frac{0.25}{0.22} \times \frac{0.30}{0.75} \times \frac{0.23}{0.32} \times \frac{0.26}{0.66} \right)
$$

= -0.90

Contribution of feature to the explanation

Let *G*(*i*) denote the contribution of feature *i* to function *φ*

$$
G(i) = \log \phi(E \cup \{i\}) - \log \phi(E)
$$

=
$$
\left(\log \underline{p}_i(\mathbf{x}_i^o | \mathbf{y}) - \log \overline{p}_i(\mathbf{x}_i^o | \mathbf{y}')\right) - \left(\log \underline{p}_i(\mathbf{x}_i^a | \mathbf{y}) - \log \overline{p}_i(\mathbf{x}_i^a | \mathbf{y}')\right)
$$

Contribution of feature *i* is independent of other features !

1.3 $\frac{1}{2}$ Æ Μ [25,26] [29,31] [20,22] [25,26]

x *^o* = (*Long*,*Short*,*Long*) $\mathbb{Q} \geq \mathbb{Z}$

G(1) = (log 0.33 – log 0.19) $-(\log 0.30 - \log 0.75) = 0.65$

 \ddotsc **Age** Æ M $p(x_1|\mathbf{y})$ L [33,40] [2,8] [10,19] [58,65] M [30,37] [55,61] [66,75] [26,33] S [30,37] [37,43] [15,23] [9,16] \mathbf{L} M $p(x_2|\mathbf{y})$ Д L [54,61] [31,37] [66,75] [2,9] M [23,30] [61,67] [23,32] [30,37] S [16,23] [2,8] [2,10] [61,69] 6,7 **All Street** л Μ $p(x_3|\mathbf{y})$ L [40,47] [46,52] [23,32] [2,9] M [26,33] [17,22] [10,19] [19,26] S [26,33] [31,37] [58,66] [72,79]

 \ddotsc $\mathbb Z$ and $\mathbb Z$ [25,26] [29,31] [20,22] [25,26]

x *^o* = (*Long*,*Short*,*Long*) $\mathbb{P}_{\geq\varnothing}$

$$
G(1) = (\log 0.33 - \log 0.19)
$$

- (log 0.30 - log 0.75) = 0.65

$$
G(2) = (\log 0.16 - \log 0.10)
$$

- (log 0.23 - log 0.32) = 0.33

1.3 л Μ [25,26] [29,31] [20,22] [25,26]

x *^o* = (*Long*,*Short*,*Long*) $\mathbb{F}_{2\varphi}$ and

$$
G(1) = (\log 0.33 - \log 0.19)
$$

- (\log 0.30 - \log 0.75) = 0.65

$$
G(2) = (\log 0.16 - \log 0.10)
$$

- (\log 0.23 - \log 0.32) = 0.33

$$
G(3) = (\log 0.40 - \log 0.32)
$$

- (\log 0.26 - \log 0.66) = 0.50

 $p(x_1|y)$ $\ddot{\cdot}$ **Age** Æ M L [33,40] [2,8] [10,19] [58,65] M [30,37] [55,61] [66,75] [26,33] S [30,37] [37,43] [15,23] [9,16] \mathbf{L} M $p(x_2|\mathbf{y})$ Д L [54,61] [31,37] [66,75] [2,9] M [23,30] [61,67] [23,32] [30,37] S [16,23] [2,8] [2,10] [61,69] $p(x_3|\mathbf{y})$ 6. 0 **All Street** л M L [40,47] [46,52] [23,32] [2,9] M [26,33] [17,22] [10,19] [19,26] S [26,33] [31,37] [58,66] [72,79]

Building *E*

We want $E \subseteq N$ such that :

$$
\phi(E) \geq 1 \Leftrightarrow \log \phi(E) \geq 0
$$

As $\log \phi$ is additive we have :

$$
\log \phi(E) = C + \sum_{i \in E} G(i) \ge 0
$$

As *G*(*i*)'s are independent, finding the smallest prime implicant is polynomial [\[2\]](#page-41-3)

heudiasyc

Computing *E*

Algorithm 1: Compute first prime implicants explanation

Input: $C: \log(\phi(\emptyset))$; $G:$ Contributions of criteria; **Output:** $Xpl = (E, \mathbf{x}_{F}^{o})$ *E*) : PI explanation and associated values Order *G* in decreasing order, with *σ* the associated permutation *i* ← 1

$$
\begin{array}{ll}\n\text{while } \phi(E) + C < 0 \text{ do} \\
\downarrow i \leftarrow i + 1 \\
E \leftarrow E \cup \{\sigma^{-1}(i)\} \\
\phi(E) \leftarrow \phi(E) + G_{\sigma(i)} \\
X \rho I \leftarrow (E, \mathbf{x}_E^o) \\
\text{return } (X \rho I)\n\end{array}
$$

Μ

[25,26] [29,31] [20,22] [25,26]
\n**x**^o = (Long, Short, Long)
\n**x**^o
$$
\geq_{\mathcal{P}}
$$

\nC = -0.9
\nG(1) = 0.65
\nG(3) = 0.50
\nG(2) = 0.33
\nE₁ = {Ears, Hair}
\nE₂ = {Ears, Tail}

● [Introduction](#page-1-0)

- ❍ [Classification](#page-2-0)
- ❍ [Prime implicant](#page-8-0)

• [Naive Credal Classifier \[3\]](#page-10-0)

- ❍ [General case](#page-11-0)
- ❍ [Prime implicants formulation](#page-24-0)
- ❍ [Computation](#page-35-0)

[Conclusion](#page-38-0)

Conclusion

Summary :

- Prime implicants for robust preferences
- Application to the NCC with convex domains
- Polynomial calculation of implicants

Perspectives :

- Pairwise or holistic explanations?
- Implications on complexity to remove the independence hypothesis ?
- Explanations for indifference?

Conclusion

References I

- Bernard, J.M. : An introduction to the imprecise dirichlet model for multinomial data. International Journal of Approximate Reasoning **39**(2-3), 123–150 (2005)
- Marques-Silva, J., Gerspacher, T., Cooper, M.C., Ignatiev, A., Narodytska, N. : Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay. In : NeurIPS 2020, December 6-12, 2020, virtual (2020)
- ■ Zaffalon, M. : The naive credal classifier. Journal of Statistical Planning and Inference **105**(1), 5–21 (2002)

