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Overview
•Knowledge Graph Embeddings


-melting pot of symbolic AI and ML


- fully expressive models are challenging


•Geometric-logic commitments


•Cone-Based Geometric Models


-faithful models that capture uncertainty
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Learning + Reasoning
• motivating hypothesis: neither learning nor reasoning alone sufficient to 

master challenging tasks


- reasoning lacks data to operate on – knowledge engineering bottleneck


- learning lacks unbiased calculus 


• active field of neuro-symbolic AI (hybrid AI)


-Logic Tensor Networks (Serafini & d’Avila Garcez, 2016; Badreddine et al., 
2022)


-Logical Neural Networks (Riegel et al. 2020, Sen et al. 2022)


- logic-based knowledge graph embeddings (e.g., Gutiérres-Basulto & 
Schockaert 2018, Kulmanov et al. 2019) 

3

x ∈ ℝn

x ∈ [0,1]

ML KR

AI Pendulum



D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

Knowledge Graph (KG)
• graph-like representation of knowledge


-vertices represent entities


-edges represent binary relations


-Boolean validity


• large-scale databases, so-called triplestore: (subj rel obj)


-semantic queries, e.g., using Wikipedia’s Wikidata


-application example: question answering


• KGs are often incomplete


- link prediction as widely considered task:  
predict validity of unseen triple (x r y) from seen triples


-example: (robin eats worm), (seagull eats worm) 
	 	 	   (blackbird eats worm)⇝

4

(Furbach et al., 2010)

KG for question answering

extracted from Wikipedia: 
“Who invented Coca-Cola?”

name   invent

human family_name

inventor

given_name

     drink            copy           produce
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Knowledge Graph Embeddings (KGEs)
• idea: link prediction achievable by exploiting similarities  

in geometrical space


- learn geometric representation reflecting data


• KGE comprises


-vector representation of object  in 


•  interprets an object geometrically


-scoring function  for relations r


• if  small,  is assumed to hold


• scoring function induces geometry of relations


• variety of approaches: how interpretation is learned, how scoring 
functions are defined

xI x ℝn

( ⋅ )I

sr : ℝn × ℝn → ℝ

sr(xI, yI) r(x, y)
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Example & Problem
• given a set of training data, KGEs determine an 

embedding that minimises errors from scoring 
functions


-simple geometric models ease ML


• vector translations are functional operations


-expressivity of relations restricted to functions


-some compromise between likelihood semantics  
of scoring and geometric limitations possible


• not fully expressive (Kazemi & Poole ’18)


-expressivity only considered wrt. data/triples


-deeper reasoning may still be impossible


‣Can we obtain an exact logic characterisation?


-…and push the envelope of expressivity?

6
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Illustration Lack of Homogeneity
• Consider a SVM classifier using hyperplanes to 

classify concepts C,D


-negations  can be represented


-conjunction  cannot be represented as 
hyperplane (neither )


• we say the geometric structure of the SVM is not 
homogeneous as the concepts it can represent 
is not closed under logic operations

¬C, ¬D
C ⊓ D

C ⊔ D

7
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Logical & Geometrical Commitments
• designing a knowledge representation involves ontological commitments, i.e., how we 

choose to see the world (Davis et al. ’93)


• designing a KGE also induces commitments, some of which may be hard to identify


-by committing to a set of geometries, we commit to a certain logic


-widely ignored in data-driven investigations


-some investigations on alignment of logic and KGE (e.g., Gutierrez-Basulto & Schockaert 
’18, Kulmanov et al. ’19)

8
three levels of geometric-logic commitments
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Aims of Logic-Based KGEs
• full expressivity of an underlying concept language


- learned embedding supports deep symbolic reasoning


• enable learning with background ontology


-No multi-label learning problem is just about labels!


-examples: , 


• idea: concepts are not points, but geometrically shaped sets


- relations between geometric entities


• task: identify pairing of concept language and geometric structure


-expressive concept languages particular useful


-easy geometric structures suggest better ML performance

∀x . bird(x) → animal(x) (HorrorFilm ⊓ FamilyFilm) ⊑ ⊥

9

concept languages

geometric structures
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Conceptual Spaces
• Gärdenfors (2000) proposes to view concepts as embedded in a space


-cognitively motivated theory of concept learning


-quality dimensions spanning subspaces


• convex sets considered as natural categories


• concept-level reasoning grounded in spatial reasoning

10

bread cakeHörnla
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Related & Inspiring Approaches

• important feature: full Boolean concept negation


-negative information introduces uncertain information 



-negation also allows coverage to be expressed, e.g., 

¬genre(x, horrorFilm) → genre(x, familyFilm) ∨ genre(x, fantasyFilm) ∨ …

¬inState(cat, hungry) ↔ inState(cat, sleepy)
11

geometrical 
structure

logic concept lattice negation reference

convex sets Quasi-Chained Datalog± distributive atomic Gutiérez-Basulto & 
Schockaert 2019

hyperspheres distributive atomic Kulmanov et al. 2019

closed subspaces Minimal Quantum Logic orthomodular orthonegation Garg et al 2019


axis-aligned cones distributive full Boolean Özçep et al 2020𝒜ℒ𝒞

ℰℒ

remainder of this talk
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Description Logic 𝒜ℒ𝒞
•terminological (tbox) and assertional (abox) knowledge


-background ontology and facts


• concepts, represented by symbols (C, D, …)


-concept subsumption 


-set-theoretic operations 


- role quantification 


• assertions, using constant and role symbols


- represent facts 

⊑ , ⊒ , ≡
⊓ , ⊔ , ¬

∃r . C, ∀r . C

12

R ⊑ H researcher, humans

R ⊔ ¬H researcher or alien

∃hasPaper . AITopic “AI expert”

R ⊓ ∃hasPaper . AITopic “AI researcher”

R ⊓ ¬H ⊑ ⊥ we are human!

human(alex), hasPaper(alex, p1), ⋯
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Convex Cones
• idea: interpret concepts as convex cones


-  is a convex cone iff 


-as usual, individuals interpreted as points


• idea: use polarity as negation (derived from scalar product)


-polar of cone defined as 


-using the usual scalar product 


• properties


-convex cones closed under polarity


- 


-

X ⊆ ℝn ∀y, z ∈ X, λ, μ ∈ ℝ≥0 . λx + μy ∈ X

X∘ = {x ∈ ℝn |∀y ∈ X . ⟨x, y⟩ ≤ 0}

⟨x, y⟩ = xT ⋅ y

(X∘)∘ = X
convexHull(X ∪ Y) = (X∘ ∩ Y∘)∘

13

efficient convex optimisation techniques

expressive geometric/algebraic operations

X

X°

X°∩Y°

X
Y
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Geometric Model (for Boolean )𝒜ℒ𝒞
• consider an embedding I as interpretation function…


- interpreting constants as points in 


- interpreting concepts as cones


- interpreting  as  and  as 


• concept terms are defined inductively using geometric operations of 
intersection (conjunction), polarity (negation)


-disjunction via De-Morgan


-we have 


• we say the embedding to a model in the logic sense for


-  iff 

ℝn

⊤ ℝn ⊥ {(0⋯0)T}

(C ⊔ ¬C)I ≡ ⊤

C(a) aI ∈ CI

14

X

X°

a

b
c

let …







CI = X
C(a)

¬C(b)
(C ⊔ ¬C)(c)
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Example
• consider simple ontology 


- , 


- , 

C ⊑ D

CI = {(x, y) ∈ ℝ2 |x ≥ 0} (¬C)I = {(x, y) ∈ ℝ2 |x ≤ 0}

DI = {(x, y) ∈ ℝ2 |x, y ≥ 0} (¬D)I = { (x, y) ∈ ℝn |x, y ≤ 0}

15
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(¬C ⊓ ¬D)I = (¬(C ⊔ D))I
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Geometrico-Algebraic Properties I
• using set intersection as conjunction, polarity as negation, and De-

Morgan for defining disjunction, we arrive at an algebra of cones


• negation is not classical in the sense  or 


-still it holds 


-weaker form, so-called ortho-negation 


-allows form of uncertainty to be captured in a geometric model


-example: , but neither  nor 

x ∈ CI x ∈ (¬C)I

(C ⊔ ¬C) ≡ ⊤

Anmimal(x) Mammal(x) ¬Mammal(x)

16

X

X°

a

b
c

let …







CI = X
C(a)

¬C(b)
(C ⊔ ¬C)(c)
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Geometrico-Algebraic Properties II
• distributivity not satisfied by arbitrary cones


- 


• bug or feature? We opt for bug…


-indeed a debatable property


-examples: recall talk by Gabriele Kern-Isberner!


• one possible solution: restrict family of cones

(A ⊓ B) ⊔ C ≠ (A ⊔ C) ⊓ (B ⊔ C)

17

A B C

(A ⊓ B)I = {0}

((A ⊓ B) ⊔ C)I = CI

BI ⊏ (A ⊔ C)I, BI ⊏ (B ⊔ C)I

((A ⊔ C) ⊓ (B ⊔ C))I = CI

(A ⊔ C)I

(B ⊔ C)I
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Axis-Aligned Cones
• Definition:  is called an axis-aligned cone (al-cones) in  iff 

 with  


-examples for ontology  already featured al-cones


• nomen est omen: axis-aligned cones (al-cones) provide a geometric 
model for 


-proposition (Özçep et al, 2020): A Boolean  ontology is 
satisfiable iff it is satisfiable with a faithful al-cone model


- faithfulness:  if and only if ontology entails .

X ℝn

X = X1 × X2 × ⋯ × Xn Xi ∈ {ℝ, ℝ+, ℝ−, {0}}

C ⊑ D

𝒜ℒ𝒞
𝒜ℒ𝒞

aI ∈ CI C(a)

18
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AL-Cone Models for Full 𝒜ℒ𝒞
• idea: interpret relations classically as subsets of cartesian product, i.e., 


- for relating concepts which are al-cones, we have  with 



• problem:  models may require infinite chains of concepts


-example (Baader & Küsters 2006): , 


• idea: approximation with bound on quantifier rank


- rationale: when querying a model, we may assume a maximum nesting of quantifiers


• proposition (Özçep et al., 2020):  ontologies with fixed quantifier rank k are 
satisfiable if and only if they are satisfiable with a faithful al-cones model


• disadvantage: relations are not first-order members entities of an embedding

R ⊆ ℝn × ℝn

R ⊆ D × D
D = D1 × ⋯ × Dn, Di ∈ {ℝ, ℝ+, ℝ+{0}}

𝒜ℒ𝒞
loves(narcis, narcis) Vain(narcis)

𝒜ℒ𝒞

19
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(Desired) Limitations of Expressivity
• there are more general logics than can be modelled 

by cones


- limitations are not necessarily a drawback


• cones constitute some restriction of Goldblatt’s 
minimal Orthologic Omin


-polarity satisfies orthonormality, cones constitute 
an ortholattice


• example: assume logic of cones does not allow MC8 
to be represented


- sample group (b) shall be representative (d)


-distinguishing  and  not sensible


‣evaluate adequacy of logical commitments!

b⊥ d⊥

20
MC8 ortholattice

Omin
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Learning with Cones: First Results
• general idea: given background ontology, learn 

embedding


• learning al-cone embedding: rather search than ML


-component-wise discrete 


• learning arbitrary cones can be achieved by SVMs


-cones defined as intersection of hyperplanes


-allows kernel trick to be used


• example with AWA2 dataset (“animals with attributes”, 
Zero-Shot Learning) (Leemhuis et al. 2022)


-problem: current datasets do not involve negation 

21

cone model gears towards  higher  
precision

-cannot learn (wrt. ontology) wrong 

baseline may guess labels
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Reification
• idea: treat relations geometrically like concepts (Leemhuis et al, 2022)


- functions map to domain and co-domain


- let 


• reification allows non-functional relations to be represented using two 
functions


-assume  to be projections,  can span a subspace


-applicable to other KG embeddings!


• question: Will reification also lead to better performance of KG 
embeddings?

(∃R . C)I = π1,R (π−1
2,R(CI) ∩ H)

πi,R π−1
2,R

22

H

π1,Rπ2,R
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Summary
• knowledge graph embeddings connect machine learning and 

symbolic reasoning


-semantics of embeddings not well-understood 


-classic embeddings mix uncertainty resulting from noisy data 
with uncertainty arising from poor semantic alignment


• geometric models can retain uncertainty in data


-beyond prototypicity/likelihood


-cones with polarity and intersection constitute algebra


-al-cones as example for a model for description logic 𝒜ℒ𝒞

23
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Conclusion and Outlook
•geometric and logic commitments constitute important design decisions


• interesting combinations of geometric models and concept languages can be found


- (al-)cones may just be the beginning


-semantically proper treatment of desired logic features is possible


-find a good balance between feasibility of learning and expressivity of concept 
languages


• geometric models are still under-explored


-and sometimes puzzling


• learning uncertain models: How can we gear learning to making concrete commitments? 

24
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