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Overview

® Knowledge Graph Embeddings
- melting pot of symbolic Al and ML
—fully expressive models are challenging
® Geometric-logic commitments
® Cone-Based Geometric Models

—faithful models that capture uncertainty

image: www.indiamart.com

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022 2



Learning + Reasoning

L. . . . . . Al Pendulum
® motivating hypothesis: neither learning nor reasoning alone sufficient to

master challenging tasks
—reasoning lacks data to operate on — knowledge engineering bottleneck

—learning lacks unbiased calculus

e active field of neuro-symbolic Al (hybrid Al)

—Logic Tensor Networks (Serafini & d'Avila Garcez, 2016; Badreddine et al.,
2022)

- Logical Neural Networks (Riegel et al. 2020, Sen et al. 2022)

—logic-based knowledge graph embeddings (e.g., Gutiérres-Basulto &
Schockaert 2018, Kulmanov et al. 2019)
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Knowledge Graph (KG)

e graph-like representation of knowledge KG for question answering
extracted from Wikipedia:

= vertices represent entities .
P “Who invented Coca-Cola?”

—edges represent binary relations humanll  pembartond family namel.
ﬁ
- Boolean Valldlty s& VAL SUB
. . john.0
e large-scale databases, so-called triplestore: (subj rel obj) e et ‘i<§*'wh
stith.0

SUB| SUBS SUB ATTR

VAL

- semantic queries, e.g., using Wikipedia's Wikidata

—application example: question answering

e KGs are often incomplete

OBJ given_name: 1.1

TEMP SUBS

- link prediction as widely considered task:
predict validity of unseen triple (x r y) from seen triples

v
produces.1.1 drink.1.1  past.0 copya.l.1

—example: (robin eats worm), (seagull eats worm)
-+~ (blackbird eats worm) (Furbach et al., 2010)
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Knowledge Graph Embeddings (KGEs)

e idea: link prediction achievable by exploiting similarities
in geometrical space
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—learn geometric representation reflecting data

e KGE comprises

—vector representation x'of object xin |

o (- )l interprets an object geometrically

x' e R"
o o . n n . ’ k’
—scoring function s, : [R" X R" — [R for relations r ® ‘\
- I I . ‘\‘ o
o if s.(x", y") small, r(x, y) is assumed to hold o—0— ®
e scoring function induces geometry of relations :/:/‘
e variety of approaches: how interpretation is learned, how scoring ®

functions are defined

|
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Example & Problem

® given a set of training data, KGEs determine an
embedding that minimises errors from scoring
functions

—simple geometric models ease ML
e vector translations are functional operations
— expressivity of relations restricted to functions

—some compromise between likelihood semantics
of scoring and geometric limitations possible

e not fully expressive (Kazemi & Poole "18)
— expressivity only considered wrt. data/triples
—deeper reasoning may still be impossible
» Can we obtain an exact logic characterisation?
—...and push the envelope of expressivity?
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lllustration Lack of Homogeneity

e Consider a SVM classifier using hyperplanes to
classify concepts C,D

- negations = C, =D can be represented

- conjunction C N D cannot be represented as
hyperplane (neither C U D)

e we say the geometric structure of the SVM is not
homogeneous as the concepts it can represent
is not closed under logic operations
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Logical & Geometrical Commitments

e designing a knowledge representation involves ontological commitments, i.e.,, how we
choose to see the world (Davis et al. '93)

¢ designing a KGE also induces commitments, some of which may be hard to identify
- by committing to a set of geometries, we commit to a certain logic
—widely ignored in data-driven investigations

—some investigations on alignment of logic and KGE (e.g., Gutierrez-Basulto & Schockaert
18, Kulmanov et al. "19)

role operators and

quantifiers 4 dR. V o ... third level

.......................................................................................................................

(T, L,A,V,) (T, L,A\,V, ) (...)
non-Boolean algebra Boolean algebra sub-Boolean algebra

.......................................................................................................................

concept operators second level

concept extension

Vali dlty pI'Obabthth blnary three-valued s ﬁrSt level

.......................................................................................................................

three levels of geometric-logic commitments
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Aims of Logic-Based KGEs

concept languages
o full expressivity of an underlying concept language Pt lahguag

- learned embedding supports deep symbolic reasoning ®
¢ enable learning with background ontology

— No multi-label learning problem is just about labels!

—examples: Vx.bird(x) — animal(x), (HorrorFilm M FamilyFilm) C L

e idea: concepts are not points, but geometrically shaped sets

- relations between geometric entities
e task: identify pairing of concept language and geometric structure °

— expressive concept languages particular useful

— easy geometric structures suggest better ML performance .
geometric structures
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Conceptual Spaces

e Gardenfors (2000) proposes to view concepts as embedded in a space

— cognitively motivated theory of concept learning

- quality dimensions spanning subspaces o BC EF
® convex sets considered as natural categories

e concept-level reasoning grounded in spatial reasoning

prototypical cake

bread Hornla cake
(croissant)
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Related & Inspiring Approaches

geometrical loi . :
ogic concept lattice negation reference
structure
. . . T . Gutiérez-Basulto &
convex sets Quasi-Chained Datalog* distributive atomic Schockaert 2019
hyperspheres A distributive atomic Kulmanov et al. 2019
closed subspaces  Minimal Quantum Logic orthomodular orthonegation Garg etal 2019
axis-aligned cones o PE distributive full Boolean Ozcep et al 2020

v¥_ remainder of this talk

—negative information introduces uncertain information
—genre(x, horrorFilm) — genre(x, familyFilm) Vv genre(x, fantasyFilm) Vv ...

e important feature: full Boolean concept negation

—negation also allows coverage to be expressed, e.qg.,
—1nState(cat, hungry) < inState(cat, sleepy)
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Description Logic &f €

o terminological (tbox) and assertional (abox) knowledge

—background ontology and facts

e concepts, represented by symbols (C, D, ...)
- concept subsumption C , Jd, =
- set-theoretic operations M1, LI, —

- role quantification dr. C,Vr.C
¢ assertions, using constant and role symbols

—represent facts
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hasPaper . AlTopic

R 11 dhasPaper . Al'Topic

researcher, humans
researcher or alien
we are human!

“Al expert”

“Al researcher”

human(alex), hasPaper(alex, p,), ---

12



Convex Cones

. Ve
e idea: interpret concepts as convex cones

efficient convex optimisation techniques

= expressive geometric/algebraic operations

- X C R"isaconvexconeiff Vy,z € X, A,y € Ryy. Ax+puy € X

—as usual, individuals interpreted as points

¢ idea: use polarity as negation (derived from scalar product)

—polar of conedefinedas X° = {x € R"|Vy e X.(x,y) <0}

- using the usual scalar product (x, y) = x’ - y

® properties Y
— convex cones closed under polarity "
- X))y =X
—-convexHull( XU Y) =(X"NY°)°
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Geometric Model (for Boolean of #¢)

e consider an embedding | as interpretation function...

n

—interpreting constants as points in |

= Interpreting concepts as cones

~interpreting T as R”and L as {(0---0)"}

e concept terms are defined inductively using geometric operations of
intersection (conjunction), polarity (negation)

—disjunction via De-Morgan

et C' = X...
— — / —
wehave (CLU-C)' =T C(a)
e we say the embedding to a model in the logic sense for - C(b)
_Cla)iffal € C! (CU=0)e)
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Example

e consider simple ontology C C D
-C'= {(x,y) ER*|x > 0}, (=C) = {(x,y) € R*|x < 0}
-D' = {(x,y) € R*|x,y > 0},(=-D)' = { (x,y) € R"|x,y <0}
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Geometrico-Algebraic Properties |

® using set intersection as conjunction, polarity as negation, and De-
Morgan for defining disjunction, we arrive at an algebra of cones

e negation is not classical in the sense x € Clorx € (=C)!
—stillitholds (CU~C) =T
—weaker form, so-called ortho-negation

—allows form of uncertainty to be captured in a geometric model

- example: Anmimal(x), but neither Mammal(x) nor ~Mammal(x)

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

let C! = X...
C(a)
~C(b)
(Cu-C)c)
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Geometrico-Algebraic Properties li

e distributivity not satisfied by arbitrary cones
-ANBUC#FAUOC)NBUCOC)

® bug or feature? We opt for bug...

—indeed a debatable property

—examples: recall talk by Gabriele Kern-Isberner!

® one possible solution: restrict family of cones (AN B) = {0}
(AnNB)LUC) =C'
Bl AuO),B'c(BucC)

[l _ 1
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Axis-Aligned Cones

e Definition: X is called an axis-aligned cone (al-cones) in R"iff | 1
X=X XX, X xX, with X € {R,R,,R_, {0}} =
|

- examples for ontology C C D already featured al-cones  AL-B

® nomen est omen: axis-aligned cones (al-cones) provide a geometric

model for &f €

— proposition (Ozcep et al, 2020): A Boolean &f £ € ontology is
satisfiable iff it is satisfiable with a faithful al-cone model

- faithfulness: a’ € C'if and only if ontology entails C(a).
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AL-Cone Models for Full o ¢

e idea: interpret relations classically as subsets of cartesian product,i.e, R C R" X |

- for relating concepts which are al-cones, we have R C D X D with
D=D X--XD, D e {R,R,,R,{0}}

e problem: &f £ 6 models may require infinite chains of concepts

— example (Baader & Klisters 2006): loves(narcis, narcis), Vain(narcis)

e idea: approximation with bound on quantifier rank

—rationale: when querying a model, we may assume a maximum nesting of quantifiers

e proposition (Ozcep et al.,, 2020): &f L€ ontologies with fixed quantifier rank k are
satisfiable if and only if they are satisfiable with a faithful al-cones model

e disadvantage: relations are not first-order members entities of an embedding
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(Desired) Limitations of Expressivity

e there are more general logics than can be modelled
by cones

- limitations are not necessarily a drawback

® cones constitute some restriction of Goldblatt’s
minimal Orthologic Omin

— polarity satisfies orthonormality, cones constitute
an ortholattice

e example: assume logic of cones does not allow MCs
to be represented

- sample group (b) shall be representative (d)

~ distinguishing b~ and d+ not sensible
» evaluate adequacy of logical commitments!
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Axioms
AHFA A& BFA A& BFB A-d-~~A

A& ~A+B AV B ~(~A& ~B)
Rules
A+FB.B+C AFB, AFC A+ B
AFC AFB& C ~BF~A
Omin

N
>‘“»<
\ /

MCs ortholattice
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(Desired) Limitations of Expressivity

e there are more general logics than can be modelled A:zmj A& BEA A& BLEB Ade e A
bycones A& ~A+FB AV B ~(~A& ~ B)
o . , Rules
- limitations are not necessarily a drawback A-B BEC A-B AFC AL B
® cones constitute some restriction of Goldblatt’s AFC OminA ~B&C ~BiE~A
minimal Orthologic Omin L
T(=possibly infected persons)
— polarity satisfies orthonormality, cones constitute / | \
an ortholattice L i.sp (b)),

people with contact | ‘ ' people with

» example: assume logic of cones does not allow MCg  toinfected person (9); -~ 1 symptoms (a)
to be represented v a.p.—(d)

- sample group (b) shall be representative (d)

infected people (d)
1 1 people Withoilt ‘ people without contaft
- distinguishing b~ and d— not sensible SYmptoms (7). e o study 10 Rfected person (c7)

. . participants (b)
» evaluate adequacy of logical commitments! \ | /

0 (=people impossibly infected)
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Learning with Cones: First Results

® general idea: given background ontology, learn

embedding

e learning al-cone embedding: rather search than ML

—component-wise discrete

e learning arbitrary cones can be achieved by SVMs

— cones defined as intersection of hyperplanes

- allows kernel trick to be used

Recall

e example with AWA?2 dataset (“animals with attributes’,

Zero-Shot Learning) (Leemhuis et al. 2022)

— problem: current datasets do not involve negation
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Reification

e idea: treat relations geometrically like concepts (Leemhuis et al, 2022)

—functions map to domain and co-domain
~let(3R.C) = | R (JTZ_,Ile(CI) N H)

e reification allows non-functional relations to be represented using two
functions

: : —1
—assume 7; , to be projections, T, R Can span a subspace

—applicable to other KG embeddings!

e question: Will reification also lead to better performance of KG
embeddings?
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Summary

e knowledge graph embeddings connect machine learning and
symbolic reasoning

—semantics of embeddings not well-understood

- classic embeddings mix uncertainty resulting from noisy data
with uncertainty arising from poor semantic alignment

® geometric models can retain uncertainty in data
- beyond prototypicity/likelihood

- cones with polarity and intersection constitute algebra

— al-cones as example for a model for description logic &/ £ €

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022
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Conclusion and Outlook

® geometric and logic commitments constitute important design decisions

¢ interesting combinations of geometric models and concept languages can be found
— (al-)cones may just be the beginning
—semantically proper treatment of desired logic features is possible

—find a good balance between feasibility of learning and expressivity of concept
languages

e geometric models are still under-explored
—and sometimes puzzling

e learning uncertain models: How can we gear learning to making concrete commitments?

A & -7
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