
Faithful Geometric Models for  
Integrating Learning and Reasoning 

Diedrich Wolter  
diedrich.wolter@uni-bamberg.de 
University of Bamberg • Germany 

 
 



Faithful Geometric Models for  
Integrating Learning and Reasoning 

Diedrich Wolter  
diedrich.wolter@uni-bamberg.de 
University of Bamberg • Germany 

 
 

Acknowledgement: 
Özgür L. Özçep & Mena Leemhuis 

University of Lübeck • Germany 



D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

Overview
•Knowledge Graph Embeddings 

-melting pot of symbolic AI and ML 

- fully expressive models are challenging 

•Geometric-logic commitments 

•Cone-Based Geometric Models 

-faithful models that capture uncertainty
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Learning + Reasoning
• motivating hypothesis: neither learning nor reasoning alone sufficient to 

master challenging tasks 

- reasoning lacks data to operate on – knowledge engineering bottleneck 

- learning lacks unbiased calculus  

• active field of neuro-symbolic AI (hybrid AI) 

-Logic Tensor Networks (Serafini & d’Avila Garcez, 2016; Badreddine et al., 
2022) 

-Logical Neural Networks (Riegel et al. 2020, Sen et al. 2022) 

- logic-based knowledge graph embeddings (e.g., Gutiérres-Basulto & 
Schockaert 2018, Kulmanov et al. 2019) 
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Knowledge Graph (KG)
• graph-like representation of knowledge 

-vertices represent entities 

-edges represent binary relations 

-Boolean validity 

• large-scale databases, so-called triplestore: (subj rel obj) 

-semantic queries, e.g., using Wikipedia’s Wikidata 

-application example: question answering 

• KGs are often incomplete 

- link prediction as widely considered task:  
predict validity of unseen triple (x r y) from seen triples 

-example: (robin eats worm), (seagull eats worm) 
     (blackbird eats worm)⇝

4

(Furbach et al., 2010)

KG for question answering 
extracted from Wikipedia: 
“Who invented Coca-Cola?”

name   invent

human family_name

inventor

given_name

     drink            copy           produce
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Knowledge Graph Embeddings (KGEs)
• idea: link prediction achievable by exploiting similarities  

in geometrical space 

- learn geometric representation reflecting data 

• KGE comprises 

-vector representation of object  in  

•  interprets an object geometrically 

-scoring function  for relations r 

• if  small,  is assumed to hold 

• scoring function induces geometry of relations 

• variety of approaches: how interpretation is learned, how scoring 
functions are defined

xI x ℝn

( ⋅ )I

sr : ℝn × ℝn → ℝ

sr(xI, yI) r(x, y)
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Example & Problem
• given a set of training data, KGEs determine an 

embedding that minimises errors from scoring 
functions 

-simple geometric models ease ML 

• vector translations are functional operations 

-expressivity of relations restricted to functions 

-some compromise between likelihood semantics  
of scoring and geometric limitations possible 

• not fully expressive (Kazemi & Poole ’18) 

-expressivity only considered wrt. data/triples 

-deeper reasoning may still be impossible 

‣Can we obtain an exact logic characterisation? 

-…and push the envelope of expressivity?
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Illustration Lack of Homogeneity
• Consider a SVM classifier using hyperplanes to 

classify concepts C,D 

-negations  can be represented 

-conjunction  cannot be represented as 
hyperplane (neither ) 

• we say the geometric structure of the SVM is not 
homogeneous as the concepts it can represent 
is not closed under logic operations

¬C, ¬D
C ⊓ D

C ⊔ D

7
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Logical & Geometrical Commitments
• designing a knowledge representation involves ontological commitments, i.e., how we 

choose to see the world (Davis et al. ’93) 

• designing a KGE also induces commitments, some of which may be hard to identify 

-by committing to a set of geometries, we commit to a certain logic 

-widely ignored in data-driven investigations 

-some investigations on alignment of logic and KGE (e.g., Gutierrez-Basulto & Schockaert 
’18, Kulmanov et al. ’19)

8
three levels of geometric-logic commitments
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Aims of Logic-Based KGEs
• full expressivity of an underlying concept language 

- learned embedding supports deep symbolic reasoning 

• enable learning with background ontology 

-No multi-label learning problem is just about labels! 

-examples: ,  

• idea: concepts are not points, but geometrically shaped sets 

- relations between geometric entities 

• task: identify pairing of concept language and geometric structure 

-expressive concept languages particular useful 

-easy geometric structures suggest better ML performance

∀x . bird(x) → animal(x) (HorrorFilm ⊓ FamilyFilm) ⊑ ⊥

9
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Conceptual Spaces
• Gärdenfors (2000) proposes to view concepts as embedded in a space 

-cognitively motivated theory of concept learning 

-quality dimensions spanning subspaces 

• convex sets considered as natural categories 

• concept-level reasoning grounded in spatial reasoning

10
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Related & Inspiring Approaches

• important feature: full Boolean concept negation 

-negative information introduces uncertain information 
 

-negation also allows coverage to be expressed, e.g., 

¬genre(x, horrorFilm) → genre(x, familyFilm) ∨ genre(x, fantasyFilm) ∨ …

¬inState(cat, hungry) ↔ inState(cat, sleepy)
11

geometrical 
structure

logic concept lattice negation reference

convex sets Quasi-Chained Datalog± distributive atomic Gutiérez-Basulto & 
Schockaert 2019

hyperspheres distributive atomic Kulmanov et al. 2019

closed subspaces Minimal Quantum Logic orthomodular orthonegation Garg et al 2019 

axis-aligned cones distributive full Boolean Özçep et al 2020𝒜ℒ𝒞

ℰℒ

remainder of this talk
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Description Logic 𝒜ℒ𝒞
•terminological (tbox) and assertional (abox) knowledge 

-background ontology and facts 

• concepts, represented by symbols (C, D, …) 

-concept subsumption  

-set-theoretic operations  

- role quantification  

• assertions, using constant and role symbols 

- represent facts 

⊑ , ⊒ , ≡
⊓ , ⊔ , ¬

∃r . C, ∀r . C

12

R ⊑ H researcher, humans

R ⊔ ¬H researcher or alien

∃hasPaper . AITopic “AI expert”

R ⊓ ∃hasPaper . AITopic “AI researcher”

R ⊓ ¬H ⊑ ⊥ we are human!

human(alex), hasPaper(alex, p1), ⋯
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Convex Cones
• idea: interpret concepts as convex cones 

-  is a convex cone iff  

-as usual, individuals interpreted as points 

• idea: use polarity as negation (derived from scalar product) 

-polar of cone defined as  

-using the usual scalar product  

• properties 

-convex cones closed under polarity 

-  

-

X ⊆ ℝn ∀y, z ∈ X, λ, μ ∈ ℝ≥0 . λx + μy ∈ X

X∘ = {x ∈ ℝn |∀y ∈ X . ⟨x, y⟩ ≤ 0}

⟨x, y⟩ = xT ⋅ y

(X∘)∘ = X
convexHull(X ∪ Y) = (X∘ ∩ Y∘)∘

13

efficient convex optimisation techniques

expressive geometric/algebraic operations

X

X°

X°∩Y°

X
Y
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Geometric Model (for Boolean )𝒜ℒ𝒞
• consider an embedding I as interpretation function… 

- interpreting constants as points in  

- interpreting concepts as cones 

- interpreting  as  and  as  

• concept terms are defined inductively using geometric operations of 
intersection (conjunction), polarity (negation) 

-disjunction via De-Morgan 

-we have  

• we say the embedding to a model in the logic sense for 

-  iff 

ℝn

⊤ ℝn ⊥ {(0⋯0)T}

(C ⊔ ¬C)I ≡ ⊤

C(a) aI ∈ CI

14

X

X°

a

b
c

let … 
 

 

CI = X
C(a)

¬C(b)
(C ⊔ ¬C)(c)
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Example
• consider simple ontology  

- ,  

- , 

C ⊑ D

CI = {(x, y) ∈ ℝ2 |x ≥ 0} (¬C)I = {(x, y) ∈ ℝ2 |x ≤ 0}

DI = {(x, y) ∈ ℝ2 |x, y ≥ 0} (¬D)I = { (x, y) ∈ ℝn |x, y ≤ 0}

15
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(¬C ⊓ ¬D)I = (¬(C ⊔ D))I



D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

Geometrico-Algebraic Properties I
• using set intersection as conjunction, polarity as negation, and De-

Morgan for defining disjunction, we arrive at an algebra of cones 

• negation is not classical in the sense  or  

-still it holds  

-weaker form, so-called ortho-negation  

-allows form of uncertainty to be captured in a geometric model 

-example: , but neither  nor 

x ∈ CI x ∈ (¬C)I

(C ⊔ ¬C) ≡ ⊤

Anmimal(x) Mammal(x) ¬Mammal(x)

16

X
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Geometrico-Algebraic Properties II
• distributivity not satisfied by arbitrary cones 

-  

• bug or feature? We opt for bug… 

-indeed a debatable property 

-examples: recall talk by Gabriele Kern-Isberner! 

• one possible solution: restrict family of cones

(A ⊓ B) ⊔ C ≠ (A ⊔ C) ⊓ (B ⊔ C)

17

A B C

(A ⊓ B)I = {0}

((A ⊓ B) ⊔ C)I = CI

BI ⊏ (A ⊔ C)I, BI ⊏ (B ⊔ C)I

((A ⊔ C) ⊓ (B ⊔ C))I = CI

(A ⊔ C)I

(B ⊔ C)I
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Axis-Aligned Cones
• Definition:  is called an axis-aligned cone (al-cones) in  iff 

 with   

-examples for ontology  already featured al-cones 

• nomen est omen: axis-aligned cones (al-cones) provide a geometric 
model for  

-proposition (Özçep et al, 2020): A Boolean  ontology is 
satisfiable iff it is satisfiable with a faithful al-cone model 

- faithfulness:  if and only if ontology entails .

X ℝn

X = X1 × X2 × ⋯ × Xn Xi ∈ {ℝ, ℝ+, ℝ−, {0}}

C ⊑ D

𝒜ℒ𝒞
𝒜ℒ𝒞

aI ∈ CI C(a)

18
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AL-Cone Models for Full 𝒜ℒ𝒞
• idea: interpret relations classically as subsets of cartesian product, i.e.,  

- for relating concepts which are al-cones, we have  with 
 

• problem:  models may require infinite chains of concepts 

-example (Baader & Küsters 2006): ,  

• idea: approximation with bound on quantifier rank 

- rationale: when querying a model, we may assume a maximum nesting of quantifiers 

• proposition (Özçep et al., 2020):  ontologies with fixed quantifier rank k are 
satisfiable if and only if they are satisfiable with a faithful al-cones model 

• disadvantage: relations are not first-order members entities of an embedding

R ⊆ ℝn × ℝn

R ⊆ D × D
D = D1 × ⋯ × Dn, Di ∈ {ℝ, ℝ+, ℝ+{0}}

𝒜ℒ𝒞
loves(narcis, narcis) Vain(narcis)

𝒜ℒ𝒞

19
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(Desired) Limitations of Expressivity
• there are more general logics than can be modelled 

by cones 

- limitations are not necessarily a drawback 

• cones constitute some restriction of Goldblatt’s 
minimal Orthologic Omin 

-polarity satisfies orthonormality, cones constitute 
an ortholattice 

• example: assume logic of cones does not allow MC8 
to be represented 

- sample group (b) shall be representative (d) 

-distinguishing  and  not sensible 

‣evaluate adequacy of logical commitments!

b⊥ d⊥

20
MC8 ortholattice
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Learning with Cones: First Results
• general idea: given background ontology, learn 

embedding 

• learning al-cone embedding: rather search than ML 

-component-wise discrete  

• learning arbitrary cones can be achieved by SVMs 

-cones defined as intersection of hyperplanes 

-allows kernel trick to be used 

• example with AWA2 dataset (“animals with attributes”, 
Zero-Shot Learning) (Leemhuis et al. 2022) 

-problem: current datasets do not involve negation 

21

cone model gears towards  higher  
precision 
-cannot learn (wrt. ontology) wrong 

baseline may guess labels
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Reification
• idea: treat relations geometrically like concepts (Leemhuis et al, 2022) 

- functions map to domain and co-domain 

- let  

• reification allows non-functional relations to be represented using two 
functions 

-assume  to be projections,  can span a subspace 

-applicable to other KG embeddings! 

• question: Will reification also lead to better performance of KG 
embeddings?

(∃R . C)I = π1,R (π−1
2,R(CI) ∩ H)

πi,R π−1
2,R

22

H

π1,Rπ2,R
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Summary
• knowledge graph embeddings connect machine learning and 

symbolic reasoning 

-semantics of embeddings not well-understood  

-classic embeddings mix uncertainty resulting from noisy data 
with uncertainty arising from poor semantic alignment 

• geometric models can retain uncertainty in data 

-beyond prototypicity/likelihood 

-cones with polarity and intersection constitute algebra 

-al-cones as example for a model for description logic 𝒜ℒ𝒞

23
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Conclusion and Outlook
•geometric and logic commitments constitute important design decisions 

• interesting combinations of geometric models and concept languages can be found 

- (al-)cones may just be the beginning 

-semantically proper treatment of desired logic features is possible 

-find a good balance between feasibility of learning and expressivity of concept 
languages 

• geometric models are still under-explored 

-and sometimes puzzling 

• learning uncertain models: How can we gear learning to making concrete commitments? 

24
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