Faithful Geometric Models for Integrating Learning and Reasoning

Universität Bamberg

Diedrich Wolter diedrich.wolter@uni-bamberg.de University of Bamberg • Germany

Faithful Geometric Models for Integrating Learning and Reasoning

Acknowledgement: Özgür L. Özçep & Mena Leemhuis University of Lübeck • Germany

Universität Bamberg

Diedrich Wolter diedrich.wolter@uni-bamberg.de University of Bamberg • Germany

Overview

• Knowledge Graph Embeddings

- melting pot of symbolic AI and ML
- fully expressive models are challenging
- Geometric-logic commitments

Cone-Based Geometric Models

- faithful models that capture uncertainty

EARNING NI S 0

semantic alignment matters

image: www.indiamart.com

Learning + Reasoning

- motivating hypothesis: neither learning nor reasoning alone sufficient to master challenging tasks
 - reasoning lacks data to operate on knowledge engineering bottleneck
 - learning lacks unbiased calculus
- active field of neuro-symbolic AI (hybrid AI)
 - Logic Tensor Networks (Serafini & d'Avila Garcez, 2016; Badreddine et al., 2022)
 - Logical Neural Networks (Riegel et al. 2020, Sen et al. 2022)

- logic-based knowledge graph embeddings (e.g., Gutiérres-Basulto & Schockaert 2018, Kulmanov et al. 2019)

Knowledge Graph (KG)

- graph-like representation of knowledge
 - -vertices represent entities
 - edges represent binary relations
 - Boolean validity
- Iarge-scale databases, so-called triplestore: (subj rel obj)
 - semantic queries, e.g., using Wikipedia's Wikidata
 - application example: question answering
- KGs are often incomplete
 - -link prediction as widely considered task: predict validity of unseen triple (x r y) from seen triples
 - -example: (robin eats worm), (seagull eats worm) → (blackbird eats worm)

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

KG for question answering extracted from Wikipedia: "Who invented Coca-Cola?"

- pemberton.0 family_name1.1 human 1.1 SU VAI invent.1.1 inventor .1 SUB ATTR SUB SUBS VAL AGT ATTR VAI SUB OBJ AGT OBJ coca-cola.0 given_name.1.1 TEMP SU SUB SUBS drink.1.1 produce 1.1 past.0 copyn.1.1
 - (Furbach et al., 2010)

Knowledge Graph Embeddings (KGEs)

- idea: link prediction achievable by exploiting similarities in geometrical space
 - learn geometric representation reflecting data
- KGE comprises
 - -vector representation x^I of object x in \mathbb{R}^n
 - $(\cdot)^{I}$ interprets an object geometrically
 - scoring function $s_r : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ for relations r
 - if $s_r(x^I, y^I)$ small, r(x, y) is assumed to hold
 - scoring function induces geometry of relations
- variety of approaches: how interpretation is learned, how scoring functions are defined

- given a set of training data, KGEs determine an embedding that minimises errors from scoring functions
 - simple geometric models ease ML
- vector translations are **functional operations**
 - expressivity of relations restricted to functions
 - some compromise between likelihood semantics of scoring and geometric limitations possible
- not fully expressive (Kazemi & Poole '18)
 - expressivity only considered wrt. data/triples
 - deeper reasoning may still be impossible

Can we obtain an exact logic characterisation?

- given a set of training data, KGEs determine an embedding that minimises errors from scoring functions
 - simple geometric models ease ML
- vector translations are **functional operations**
 - expressivity of relations restricted to functions
 - some compromise between likelihood semantics of scoring and geometric limitations possible
- not fully expressive (Kazemi & Poole '18)
 - expressivity only considered wrt. data/triples
 - deeper reasoning may still be impossible

Can we obtain an exact logic characterisation?

- given a set of training data, KGEs determine an embedding that minimises errors from scoring functions
 - simple geometric models ease ML
- vector translations are **functional operations**
 - expressivity of relations restricted to functions
 - some compromise between likelihood semantics of scoring and geometric limitations possible
- not fully expressive (Kazemi & Poole '18)
 - expressivity only considered wrt. data/triples
 - deeper reasoning may still be impossible

Can we obtain an exact logic characterisation?

- given a set of training data, KGEs determine an embedding that minimises errors from scoring functions
 - simple geometric models ease ML
- vector translations are functional operations
 - expressivity of relations restricted to functions
 - some compromise between likelihood semantics of scoring and geometric limitations possible
- not fully expressive (Kazemi & Poole '18)
 - expressivity only considered wrt. data/triples
 - deeper reasoning may still be impossible

Can we obtain an exact logic characterisation?

- given a set of training data, KGEs determine an embedding that minimises errors from scoring functions
 - simple geometric models ease ML
- vector translations are functional operations
 - expressivity of relations restricted to functions
 - some compromise between likelihood semantics of scoring and geometric limitations possible
- not fully expressive (Kazemi & Poole '18)
 - expressivity only considered wrt. data/triples
 - deeper reasoning may still be impossible

Can we obtain an exact logic characterisation?

- given a set of training data, KGEs determine an embedding that minimises errors from scoring functions
 - simple geometric models ease ML
- vector translations are functional operations
 - expressivity of relations restricted to functions
 - some compromise between likelihood semantics of scoring and geometric limitations possible
- not fully expressive (Kazemi & Poole '18)
 - expressivity only considered wrt. data/triples
 - deeper reasoning may still be impossible

Can we obtain an exact logic characterisation?

- given a set of training data, KGEs determine an embedding that minimises errors from scoring functions
 - simple geometric models ease ML
- vector translations are functional operations
 - expressivity of relations restricted to functions
 - some compromise between likelihood semantics of scoring and geometric limitations possible
- not fully expressive (Kazemi & Poole '18)
 - expressivity only considered wrt. data/triples
 - deeper reasoning may still be impossible

Can we obtain an exact logic characterisation?

- given a set of training data, KGEs determine an embedding that minimises errors from scoring functions
 - simple geometric models ease ML
- vector translations are functional operations
 - expressivity of relations restricted to functions
 - some compromise between likelihood semantics of scoring and geometric limitations possible
- not fully expressive (Kazemi & Poole '18)
 - expressivity only considered wrt. data/triples
 - deeper reasoning may still be impossible

Can we obtain an exact logic characterisation?

- scoring value mixes uncertainty resulting from noise in data
- limitations of geometric model

Illustration Lack of Homogeneity

- Consider a SVM classifier using **hyperplanes** to classify concepts C,D
 - -negations $\neg C$, $\neg D$ can be represented
 - conjunction $C \sqcap D$ cannot be represented as hyperplane (neither $C \sqcup D$)
- we say the geometric structure of the SVM is not **homogeneous** as the concepts it can represent is not closed under logic operations

Logical & Geometrical Commitments

- choose to see the world (Davis et al. '93)
- designing a KGE also induces commitments, some of which may be hard to identify
 - by committing to a set of geometries, we commit to a certain logic
 - widely ignored in data-driven investigations
 - '18, Kulmanov et al. '19)

three levels of geometric-logic commitments D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

• designing a knowledge representation involves **ontological commitments**, i.e., how we

- some investigations on alignment of logic and KGE (e.g., Gutierrez-Basulto & Schockaert

$\exists R. \forall$	۵		third level
⊥, ∧, ∨, ¬) lean algeb) () ora sub-Boolean	algebra	second level
binary	three-valued	•••	first level
tric-loai	c commitment		

Aims of Logic-Based KGEs

- full expressivity of an underlying concept language
 - learned embedding supports deep symbolic reasoning
- enable learning with background ontology
 - No multi-label learning problem is just about labels!
 - -examples: $\forall x . bird(x) \rightarrow animal(x), (HorrorFilm \sqcap FamilyFilm) \sqsubseteq \bot$
- idea: concepts are not points, but geometrically shaped sets
 - relations between geometric entities
- task: identify pairing of concept language and geometric structure
 - expressive concept languages particular useful
 - easy geometric structures suggest better ML performance

concept languages

geometric structures

Conceptual Spaces

- Gärdenfors (2000) proposes to view concepts as embedded in a space
 - cognitively motivated theory of concept learning
 - quality dimensions spanning subspaces
- convex sets considered as natural categories
- concept-level reasoning grounded in spatial reasoning

bread

Hörnla (croissant)

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

prototypical cake

cake

Related & Inspiring Approaches

geometrical structure	logic	concept lattice	negation	reference		
convex sets	Quasi-Chained Datalog [±]	distributive	atomic	Gutiérez-Basulto Schockaert 2019		
hyperspheres	$\mathcal{E}\mathcal{L}$	distributive	atomic	Kulmanov et al. 20		
closed subspaces	Minimal Quantum Logic	orthomodular	orthonegation	Garg et al 2019		
axis-aligned cones	ALC	distributive	full Boolean	Özçep et al 2020		
important feature	e: full Boolean conce	ptnegation	remai	inder of this talk		
- negative information introduces uncertain information \neg genre(x, horrorFilm) \rightarrow genre(x, familyFilm) \lor genre(x, fantasyFilm) \lor						
-negation also allows coverage to be expressed, e.g., ¬inState(cat, hungry) ↔ inState(cat, sleepy)						

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

Description Logic ALB

- terminological (tbox) and assertional (abox) knowledge
 - background ontology and facts
- **concepts**, represented by symbols (C, D, ...)
 - concept subsumption \Box , \exists , \equiv
 - set-theoretic operations \Box, \sqcup, \neg
 - -role quantification $\exists r. C, \forall r. C$
- **assertions**, using constant and role symbols represent facts

- $R \sqsubseteq H$ researcher, humans
- $R \sqcup \neg H$ researcher or alien
- $R \sqcap \neg H \sqsubseteq \bot$ we are human!
- BhasPaper.AITopic "Al expert"
- $R \sqcap \exists hasPaper. AITopic$ "Al researcher"

human(alex), hasPaper(alex, p_1), ...

Convex Cones

efficient convex optimisation techniques

- idea: interpret concepts as convex cones
 - $-X \subseteq \mathbb{R}^n$ is a convex cone iff $\forall y, z \in X, \lambda$,
 - as usual, individuals interpreted as points
- idea: use polarity as negation (derived from scalar product)
 - -polar of cone defined as $X^{\circ} = \{x \in \mathbb{R}^n \mid \forall$
 - -using the usual scalar product $\langle x, y \rangle = x^T$
- properties
 - convex cones closed under polarity

 $-(X^{\circ})^{\circ} = X$

 $-\operatorname{convexHull}(X \cup Y) = (X^{\circ} \cap Y^{\circ})^{\circ}$

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

expressive geometric/algebraic operations

$$\mu \in \mathbb{R}_{\geq 0} \, . \, \lambda x + \mu y \in X$$

$$\forall y \in X. \langle x, y \rangle \le 0 \}$$

$$T \cdot y$$

Geometric Model (for Boolean \mathscr{ALC})

- consider an embedding I as interpretation function...
 - interpreting constants as points in \mathbb{R}^n
 - interpreting concepts as cones
 - -interpreting T as \mathbb{R}^n and \perp as $\{(0\cdots 0)^T\}$
- concept terms are defined inductively using geometric operations of intersection (conjunction), polarity (negation)
 - disjunction via De-Morgan
 - we have $(C \sqcup \neg C)^I \equiv T$
- we say the embedding to a model in the logic sense for

$$-C(a)$$
 iff $a^I \in C^I$

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

X° let $C^I = X...$ C(a) $(C \sqcup \neg C)(c)$

• consider simple ontology $C \sqsubseteq D$

$$-C^{I} = \{(x, y) \in \mathbb{R}^{2} | x \ge 0\}, (\neg C)^{I} = \{(x, y) \in \mathbb{R}^{2} | x, y \ge 0\}, (\neg D)^{I} = \{(x, y) \in \mathbb{R}$$

$(x, y) \in \mathbb{R}^2 | x \le 0 \}$ $\{ (x, y) \in \mathbb{R}^n | x, y \le 0 \}$

• consider simple ontology $C \sqsubseteq D$

$$-C^{I} = \{(x, y) \in \mathbb{R}^{2} | x \ge 0\}, (\neg C)^{I} = \{(x, y) \in \mathbb{R}^{2} | x, y \ge 0\}, (\neg D)^{I} = \{(x, y) \in \mathbb{R}$$

D. Wolter: Faithful Geome

$(x, y) \in \mathbb{R}^2 | x \le 0 \}$ $\{ (x, y) \in \mathbb{R}^n | x, y \le 0 \}$

• consider simple ontology $C \sqsubseteq D$

$-C^{I} = \{(x, y) \in \mathbb{R}^{2} | x \ge 0\}, (\neg C)^{I} = \{(x, y) \in \mathbb{R}^{2} | x \le 0\}$ $-D^{I} = \{(x, y) \in \mathbb{R}^{2} | x, y \ge 0\}, (\neg D)^{I} = \{(x, y) \in \mathbb{R}^{n} | x, y \le 0\}$

D. Wolter: Faithful Geome

• consider simple ontology $C \sqsubseteq D$

$-C^{I} = \{(x, y) \in \mathbb{R}^{2} | x \ge 0\}, (\neg C)^{I} = \{(x, y) \in \mathbb{R}^{2} | x \le 0\}$ $-D^{I} = \{(x, y) \in \mathbb{R}^{2} | x, y \ge 0\}, (\neg D)^{I} = \{(x, y) \in \mathbb{R}^{n} | x, y \le 0\}$

$(\neg C \sqcap \neg D)^I = (\neg (C \sqcup D))^I$

D. Wolter: Faithful Geome

Geometrico-Algebraic Properties

- using set intersection as conjunction, polarity as negation, and De-Morgan for defining disjunction, we arrive at an **algebra of cones**
- negation is not classical in the sense $x \in C^{I}$ or $x \in (\neg C)^{I}$
 - still it holds $(C \sqcup \neg C) \equiv T$
 - -weaker form, so-called ortho-negation

 - allows form of uncertainty to be captured in a geometric model -example: Annimal(x), but neither Mammal(x) nor \neg Mammal(x)

Geometrico-Algebraic Properties II

- distributivity not satisfied by *arbitrary* cones $-(A \sqcap B) \sqcup C \neq (A \sqcup C) \sqcap (B \sqcup C)$
- bug or feature? We opt for **bug**... indeed a debatable property
 - examples: recall talk by Gabriele Kern-Isberner!
- one possible solution: restrict family of cones

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

 $(A \sqcap B)^I = \{0\}$ $((A \sqcap B) \sqcup C)^{I} = C^{I}$ $B^{I} \sqsubset (A \sqcup C)^{I}, B^{I} \sqsubset (B \sqcup C)^{I}$ $((A \sqcup C) \sqcap (B \sqcup C))^{I} = C^{I}$

Axis-Aligned Cones

• Definition: X is called an axis-aligned cone (al-cones) in \mathbb{R}^n iff $X = X_1 \times X_2 \times \cdots \times X_n \text{ with } X_i \in \{\mathbb{R}, \mathbb{R}_+, \mathbb{R}_-, \{0\}\}$

- examples for ontology $C \sqsubseteq D$ already featured al-cones

- nomen est omen: axis-aligned cones (al-cones) provide a geometric model for \mathscr{ALC}
 - proposition (Özçep et al, 2020): A Boolean \mathscr{ALC} ontology is satisfiable iff it is satisfiable with a faithful al-cone model

-faithfulness: $a^I \in C^I$ if and only if ontology entails C(a).

AL-Cone Models for Full \mathscr{ALC}

- idea: interpret relations classically as subsets of cartesian product, i.e., $R \subseteq \mathbb{R}^n \times \mathbb{R}^n$ - for relating concepts which are al-cones, we have $R \subseteq D \times D$ with $D = D_1 \times \cdots \times D_n, D_i \in \{\mathbb{R}, \mathbb{R}_+, \mathbb{R}_+\{0\}\}$
- problem: \mathscr{ALC} models may require infinite chains of concepts
 - -example (Baader & Küsters 2006): loves(narcis, narcis), Vain(narcis)
- idea: approximation with bound on quantifier rank
 - rationale: when querying a model, we may assume a maximum nesting of quantifiers
- **proposition** (Özçep et al., 2020): \mathscr{ALC} ontologies with fixed quantifier rank k are satisfiable if and only if they are satisfiable with a faithful al-cones model
- disadvantage: relations are not first-order members entities of an embedding

(Desired) Limitations of Expressivity

- there are more general logics than can be modelled by cones
 - -limitations are not necessarily a drawback
- cones constitute some restriction of Goldblatt's minimal Orthologic Omin
 - polarity satisfies orthonormality, cones constitute an ortholattice
- example: assume logic of cones does not allow MC₈ to be represented
 - sample group (b) shall be representative (d)

– distinguishing b^{\perp} and d^{\perp} not sensible

evaluate adequacy of logical commitments!

(Desired) Limitations of Expressivity

- there are more general logics than can be modelled by cones
 - -limitations are not necessarily a drawback
- cones constitute some restriction of Goldblatt's minimal Orthologic Omin
 - polarity satisfies orthonormality, cones constitute an **ortholattice**
- example: assume logic of cones does not allow MC₈ to be represented
 - sample group (b) shall be representative (d)

– distinguishing b^{\perp} and d^{\perp} not sensible

evaluate adequacy of logical commitments!

(Desired) Limitations of Expressivity

- there are more general logics than can be modelled by cones
 - -limitations are not necessarily a drawback
- cones constitute some restriction of Goldblatt's minimal Orthologic Omin
 - polarity satisfies orthonormality, cones constitute an **ortholattice**
- example: assume logic of cones does not allow MC₈ to be represented
 - sample group (b) shall be representative (d)

– distinguishing b^{\perp} and d^{\perp} not sensible

evaluate adequacy of logical commitments!

Learning with Cones: First Results

- general idea: given background ontology, learn embedding
- Iearning al-cone embedding: rather search than ML
 - component-wise discrete
- learning arbitrary cones can be achieved by SVMs
 - cones defined as intersection of hyperplanes
 - allows kernel trick to be used
- example with AWA2 dataset ("animals with attributes", Zero-Shot Learning) (Leemhuis et al. 2022)
 - problem: current datasets do not involve negation

baseline may guess labels $\begin{array}{c} \infty \circ \circ \circ \circ \\ 10 7 6 5 4 \end{array}$ 2 0 5–10² 0.9 0.8 0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.2 0.3 0.4 0.8 0.1 0.5 0.6 0.7 0 Precision

cone model gears towards higher precision - cannot learn (wrt. ontology) wrong

Reification

 idea: treat relations geometrically like concepts (Leemhuis et al, 2022) - functions map to domain and co-domain

$$- \operatorname{let} (\exists R \, . \, C)^{I} = \pi_{1,R} \left(\pi_{2,R}^{-1}(C^{I}) \cap H \right)$$

- reification allows non-functional relations to be represented using two functions
 - assume $\pi_{i,R}$ to be projections, $\pi_{2,R}^{-1}$ can span a subspace
 - applicable to other KG embeddings!
- question: Will reification also lead to better performance of KG embeddings?

Summary

- knowledge graph embeddings connect machine learning and symbolic reasoning
 - semantics of embeddings not well-understood
 - classic embeddings mix uncertainty resulting from noisy data with uncertainty arising from poor semantic alignment
- geometric models can retain uncertainty in data
 - beyond prototypicity/likelihood
 - cones with polarity and intersection constitute algebra
 - al-cones as example for a model for description logic \mathscr{ALC}

EARNING A S O N I N G

semantic alignment matters

image: www.indiamart.com

Conclusion and Outlook

• geometric and logic commitments constitute important design decisions

- Interesting combinations of geometric models and concept languages can be found
 - (al-)cones may just be the beginning
 - semantically proper treatment of desired logic features is possible
 - find a good balance between feasibility of learning and expressivity of concept languages
- geometric models are still under-explored
 - and sometimes puzzling

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

• learning uncertain models: How can we gear learning to making concrete commitments?

$$\rightarrow$$
 T

References

this presentation was based on...

- Ö. L. Özçep, M. Leemhuis, D. W. (2020). Cone Semantics for Logics with Negation, In Proc. of IJCAI
- Intelligence, 90:7–9
- Proc. of KI: Advances in Artificial Intelligence, Springer

references

- F. Baader, R. Küsters (2002). Unification in a Description Logic with Inconsistency and Transitive Closure of Roles. Proc. of DL
- S. Badreddine, A. A. Garcez, L. Serafini, M. Spranger (2022). Logic tensor networks, AIJ, 303: 103649
- J. Bischofberger & M. Ragni (2020). Improving Cognitive Models for Syllogistic Reasoning. Proceedings of the 42th Annual Meeting of the Cognitive Science Society - Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020
- Gärdenfors (2000). Conceptual Spaces: The Geometry of Thought, MIT press
- D. Garg, S. Ikbal, S. K. Srivastava, H. Vishwakarma, H. Karanam, L V. Subramaniam (2019). Quantum Embedding of Knowledge for Reasoning, Proc. of NeurIPS
- between vector space representations and rules, Proc. of KR
- S. M. Kazemi, D. Poole (2018). SimplE Embedding for Link Prediction in Knowledge Graphs, Proc. of NeuIPS
- Neelam, A. Likhyani, S. K. Srivastava (2020): Logical Neural Networks. CoRR abs/2006.13155
- P. Sen, B. W. S. R. de Carvalho, R. Riegel, A. G. Gray (2022). Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks, Proc. of AAAI
- Intelligence

D. Wolter: Faithful Geometric Models for Integrating Learning and Reasoning, SUM 2022

• M. Leemhuis, Ö. L. Özçep, D. W. (2022). Learning with Cone-Based Geometric Models and Orthologics, Annals of Mathematics and Artificial

• M. Leemhuis, Ö. L. Özçep, D. W. (2022). Knowledge Graph Embeddings with Ontologies: Reification for Representing Arbitrary Relations, In

• V. Gutiérrez-Basulto & S. Schockaert (2018). From knowledge graph embedding to ontology embedding? An analysis of the compatibility

• M. Kulmanov, W. Liu-Wei, Y. Yan, R. Hoehndorf (2019). EL Embeddings: Geometric Construction of Models for the Description Logic EL++ • R. Riegel, A. G. Gray, F. P. S. Luus, N. Khan, N. Makondo, I. Y. Akhalwaya, H. Qian, R. Fagin, F. Barahona, U. Sharma, S. Ikbal, H. Karanam, S.

• L. Serafini, A. S. d'Avila Garcez (2016). Learning and reasoning with logic tensor networks, Proc. of the Italian Association for Artificial

