Identifying and repairing inconsistencies in preference elicitation SUM 2022

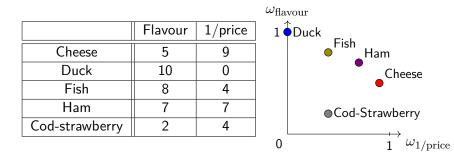
Loïc Adam, Sébastien Destercke

Heudiasyc - Université de Technologie de Compiègne Centre national de la recherche scientifique (CNRS)

18 October 2022

heudiasvc

Plan



2 Maximal Coherent Subsets: an interesting solution

Example: multiple-criteria decision

• Questions: how can I find my favourite pizza?

• Supposition: agent's preferences = aggregation function.

• Here: $f_{\omega}(\text{pizza}) = 0.6 \text{ flavour} + 0.4 \text{ 1/price}.$

Example: multiple-criteria decision

• Questions: how can I find my favourite pizza?

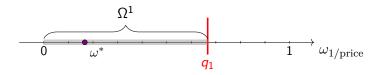
	Flavour	1/price	f_{ω}
Cheese	5	9	6.6
Duck	10	0	6
Fish	8	4	6.4
Ham	7	7	7
Cod-strawberry	2	4	2.8

- Supposition: agent's preferences = aggregation function.
- Here: $f_{\omega}(\text{pizza}) = 0.6 \text{ flavour} + 0.4 \text{ 1/price}.$
- Best: ham with a score of 7. Cod-strawberry always dominated.

Why elicitation?

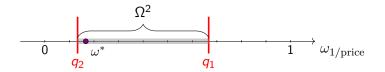
Problem: in practice, the parameters ω are unknown.

- An expert chooses a parametric family of aggregate functions of criteria f_ω (weighted sum, OWA...) describing the preferences.
- The expert searches ω ∈ Ω through an elicitation¹ of the user's preferences with explicit questions (pairwise comparison).
- Here: incremental [1] robust [2, 3] elicitation \Rightarrow strong performance guarantees, supposing no errors in the answers (oracle) and in the choice of f_{ω} .


¹Elicitation: collect and formalize human knowledge for further exploitation.

L. Adam, S. Destercke (Heudiasyc)

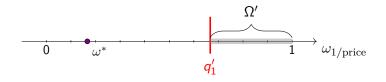
Repair preference elicitation


Find ω^*

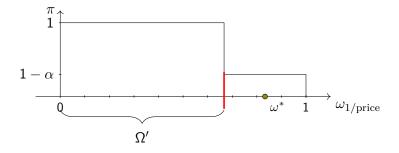
- The agent answers correctly three questions q_1 , q_2 and q_3 by comparing each time two alternatives.
- Each answer refines the set of possible models such that $\omega^* \in \Omega^3 \subset \Omega^2 \subset \Omega^1 \subset \Omega$.

Find ω^*

- The agent answers correctly three questions q_1 , q_2 and q_3 by comparing each time two alternatives.
- Each answer refines the set of possible models such that $\omega^* \in \Omega^3 \subset \Omega^2 \subset \Omega^1 \subset \Omega$.


Find ω^*

- The agent answers correctly three questions q_1 , q_2 and q_3 by comparing each time two alternatives.
- Each answer refines the set of possible models such that $\omega^* \in \Omega^3 \subset \Omega^2 \subset \Omega^1 \subset \Omega$.


What happens in case of error?

 Let us suppose the agent gives a wrong answer to the question q'₁, then the optimal model ω^{*} is not part of Ω':

 Further questions will refine Ω', thus never returning to the optimal model.

A solution: possibilistic elicitation [4]

- The agent gives a confidence level $\alpha \in [0,1]$ with each answer.
- Robust to wrong answers/models (possible to return to $\Omega \setminus \Omega'$), and we can detect inconsistency easily.

Limitations: why we want to repair

• As inconsistency increases, recommendations are likely to become less optimal, but nothing is done to handle inconsistency.

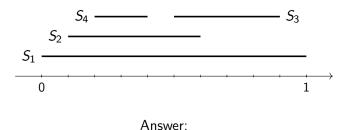
 \Rightarrow instead of stopping early, we could remove/correct inconsistency to continue elicitation and improve the final recommendation.

• While we can detect both sources of inconsistency (user and model), we have no information on the source of the inconsistency.

 \Rightarrow determining the source of inconsistency is important to correct it, but also to improve the elicitation process.

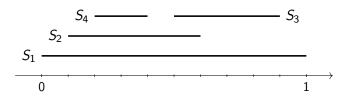
Plan

2 Maximal Coherent Subsets: an interesting solution



Maximal Coherent Subsets (MCS)

- Definition of MCS: groups of consistent sources that are as big as possible.
- Two answers q₁ and q₂ are consistent: the intersection of the subsets of possible models Ω¹ and Ω² is non-empty (represented with polytopes).
- A more formal definition: set of sets $S = \{S_1, ..., S_n\}$ with:
 - Non-empty intersection: $\bigcap_{i=1}^{n} S_i \neq \emptyset$.
 - Maximal intersection: $\forall P \notin S, \bigcap_{i=1}^n S_i \cap P = \emptyset$.


Example : MCS

What are the MCSs?

Example : MCS

What are the MCSs?

Answer: $\{1, 2, 3\}$ and $\{1, 2, 4\}$.

Why and why not MCS?

Pros:

- A natural way of coping with inconsistent information: separate inconsistent sources into multiple consistent groups.
- Require no additional information on the sources.
- MCSs have been used in the past both in logic [5] and in numerical settings [6].

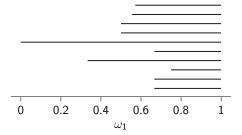
Con:

• Enumerating MCSs is a NP-hard problem in general $(2^N$ subsets).

A solution: approximation with hyperrectangles

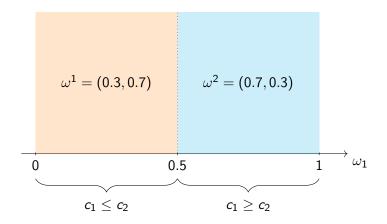
- Enumerating MCS is computationally easy (polynomial) with intervals [7].
- We proved that this can be used to efficiently find MCS for axis-aligned hyperrectangles [8].
- Possible to approximate polytopes with inner and outer approximations based on such hyperrectangles.

 \Rightarrow we have approximations of the different MCSs.

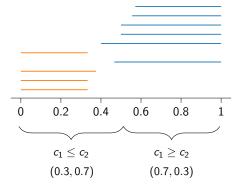

Plan

2 Maximal Coherent Subsets: an interesting solution

Normal elicitation

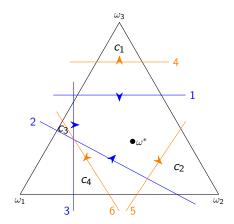


• All answers have at least one common $\omega \in \Omega$.


 \Rightarrow no inconsistency, giving an optimal recommendation.

Elicitation with an OWA model

• An OWA can be seen as a piecewise weighted sum. Supposing we have an OWA with $\omega^* = (0.7, 0.3)$:



Elicitation with a wrong model (OWA right, WS supposed)

- Two MCSs that are roughly the same size and dissociated.
 - \Rightarrow easy to conclude there is a model error.
- We can switch to a more expressive (k-Choquet) or alternate (OWA) model.

Elicitation with wrong answers (3 correct, 3 incorrect)

- MCSs:
 - $c_1 = \{2, 3, 4\},$ • $c_2 = \{1, 2, 3, 5\},$ • $c_3 = \{1, 2, 6\},$ • $c_4 = \{1, 3, 6\}.$
- MCSs are roughly the same size, with many overlaps.

 \Rightarrow hard to determine and thus remove/correct errors.

What to do now

- We can differentiate model (systematic) and user (random) errors. However, identifying user errors finely seems difficult.
 ⇒ probably due to the relatively poor information given by each answer (quite large sets).
- We plan to do larger experiments (more dimensions, optimal questions...).
- For user errors, we also want to consider different solutions:
 - Use confidence levels to determine which MCS to keep, and therefore remove/correct errors.
 - Instead of pairwise comparison, the user picks her favourite alternative between three.
 - ...

References I

Nawal Benabbou, Patrice Perny, and Paolo Viappiani.

Incremental elicitation of choquet capacities for multicriteria choice, ranking and sorting problems.

Artificial Intelligence, 246:152-180, 2017.

Craig Boutilier.

Computational decision support: Regret-based models for optimization and preference elicitation.

Comparative Decision Making: Analysis and Support Across Disciplines and Applications, pages 423–453, 2013.

Nadjet Bourdache and Patrice Perny.

Anytime algorithms for adaptive robust optimization with owa and wowa.

In International Conference on Algorithmic DecisionTheory, pages 93–107. Springer, 2017.

References II

- Loïc Adam and Sébastien Destercke.
 Possibilistic preference elicitation by minimax regret.
 In Uncertainty in Artificial Intelligence, pages 718–727. PMLR, 2021.
- R Manor and N Rescher.
 On inference from inconsistent premises. Theory and Decision, 1:179–219, 1970.
- Sebastien Destercke, Didier Dubois, and Eric Chojnacki. Possibilistic information fusion using maximal coherent subsets. IEEE Transactions on Fuzzy Systems, 17(1):79–92, 2008.

References III

Didier Dubois, Hélène Fargier, and Henri Prade.

Multiple-sources informations fusion-a pratical inconsistency-tolerant approach.

In 8th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU 2000). Consejo Superior de Investigaciones Científicas, 2000.

Loïc Adam and Sébastien Destercke.

Multi-dimensional maximal coherent subsets made easy: illustration on an estimation problem.

In International Conference on Soft Methods in Probability and Statistics, 2022.