Explanation of Pseudo-Boolean Functions using Cooperative Game Theory and Prime Implicants

C. Labreuche 1,2

¹ THALES Research & Technology, Palaiseau, France ²SINCLAIR AI Lab, Palaiseau, France email: christophe.labreuche@thalesgroup.com

Outline

Case of Boolean Functions
Setting and definitions

- Motivation and Proposal
- Case of Pseudo-Boolean Functions
 - Definition & Properties
 - Construction of the optimal coalition

Two different explanations of a function f applied on an instance x

Formal approaches – Sufficient Explanations

- Find the caracteristics in x that are *sufficient* to get the outcome f(x)
- Process of generalizing x (removing values on attributes) while keeping the same outcome f(x)

CONS

 Restricted to Boolean (discrete) output

PROS

- Clear meaning
- Actionable explanation

Illustration with 2 features: x = (true, true)

Is the subset SUFFICIENT?	1 alone	2 alone	1,2 together
f = AND	NO	NO	YES
f = OR	YES	YES	YES

Two different explanations of a function f applied on an instance x

Heuristics – Feature attribution

• Allocate a *contribution level* of each attribute of x in f(x)

CONS

- What to do with these numbers?
- Cannot represent the idea of sufficiency

PROS

- Highlights the most important features
- Model agnostic

Illustration with 2 features

Cannot distinguish between AND and OR operators!

Aim of the work

Define a *feature attribution* approach representing *sufficiency*.

• If a single feature is sufficient, it is enough to select it!

Setting and definitions Motivation and Proposal

Outline

2

Context and Motivation

Case of Boolean Functions

- Setting and definitions
- Motivation and Proposal
- 3 Case of Pseudo-Boolean Functions
 - Definition & Properties
 - Construction of the optimal coalition

Setting and definitions Motivation and Proposal

Outline

Case of Boolean Functions
 Setting and definitions

Motivation and Proposal

3 Case of Pseudo-Boolean Functions

- Definition & Properties
- Construction of the optimal coalition

Setting and definitions Motivation and Proposal

Setting

- $N = \{1, ..., n\}$: index set of attributes/features.
- We assume Boolean variables/features.
- $D = \{0, 1\}^N$: set of alternatives/instances.

Boolean Function (BF)	0-1 Game
A <i>BF</i> is a function $f : D \rightarrow \{0, 1\}$.	A 0-1 game is a set function $v : 2^N \rightarrow \{0, 1\}$.
Pseudo-Boolean Function (PBF)	Game

- $f \mapsto v_f$ defined by $v_f(S) = f(1_S, 0_{N \setminus S})$.
- v (resp. f) is assumed to be monotone.

Setting and definitions Motivation and Proposal

Sufficient Explanation: prime implicants & winning coalitions

\mathcal{I}_{f} : Implicants of f	\mathcal{W}_{ν} : Winning Coalitions
An <i>implicant</i> is a conjuction of literals 1_S s.t. $f(1_S, x_{N\setminus S}) = 1$ for all x.	A winning coalition is a subset S s.t. $v(S) = 1$.
\mathcal{PI}_{f} : Prime Implicants of <i>f</i>	\mathcal{MW}_{v} : Minimal Winning Coalitions
A prime implicant is a minimal implicant.	Minimal Winning Coalitions w.r.t. ⊆.

Irrelevant / mandatory coalition

A variable is *null* if changing the value on this variable never modifies the output *v*. A variable is a *veto*, if all winning coalitions include this variable.

$f(x) = x_1 \land (x_2 \lor x_3) \text{ on } N = \{1, 2, 3, 4\}$	$v(S)=1$ iff $(1\in S)\wedge [(2\in S)ee (3\in S)]$
$\begin{split} \mathcal{I}_{f} &= \{1_{\{1,2\}}, 1_{\{1,3\}}, 1_{\{1,2,3\}}, 1_{\{1,2,4\}}, 1_{\{1,3,4\}}, 1_{\{1,2,3,4\}}\}\\ \text{and } \mathcal{PI}_{f} &= \{1_{\{1,2\}}, 1_{\{1,3\}}\}.\\ \text{Feature 4 is irrelevant and 1 is mandatory.} \end{split}$	$ \begin{split} \mathcal{W}_{\nu} &= \\ \{\{1,2\},\{1,3\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{1,2,3,4\}\} \\ \text{and} \ \mathcal{M}\mathcal{W}_{\nu} &= \{\{1,2\},\{1,3\}\}. \end{split} $

Setting and definitions Motivation and Proposal

Heuristic Explanation: feature attribution

How to distribute the total worth v(N) among the players?

Setting and definitions Motivation and Proposal

Outline

Context and Motivation

Case of Boolean Functions Setting and definitions

- Motivation and Proposal
- 3 Case of Pseudo-Boolean Functions
 - Definition & Properties
 - Construction of the optimal coalition

Setting and definitions Motivation and Proposal

Values cannot represent sufficiency

Illustration w	with $N =$	{1,2}
----------------	------------	-------

$m{v}_\wedge(m{S})=1 ext{ iff } (1\in m{S}) \wedge (2\in m{S})$	and	$v_{ee}(S)=1$	iff (1 ∈	$S) \lor (2 \in S).$
--	-----	---------------	-----------------	----------------------

Prime Implicants	Game Theory
$\mathcal{MW}_{v_{\wedge}} = \{\{1,2\}\}$	$\phi_1(N, v_\wedge) = \phi_2(N, v_\wedge) = 1/2$
$\mathcal{MW}_{\nu_{\vee}}=\{\{1\},\{2\}\}$	$\phi_1(\pmb{N},\pmb{v}_ee)=\phi_2(\pmb{N},\pmb{v}_ee)={}^1/{}^2$

Setting and definitions Motivation and Proposal

Values cannot represent sufficiency

Sufficient Feature Contribution

A value σ^{0-1} on BFs is *sufficient* if

- (i) if *i* is *null* (i.e. *i* is in no \mathcal{MV}_{v}), then $\sigma_{i}^{0-1}(N, v) = 0$,
- (ii)_a If $\{i\} \in \mathcal{MV}_{\nu}$ then $\sigma_i^{0-1}(N, \nu) = 1$,
- (ii)_b If *i* is a *veto* (i.e. *i* is in all \mathcal{MV}_v), then its influence cannot be smaller than that of any other player,
- (iii) For $i, j \in N$: If for all $S \in \mathcal{MW}_v$ with $i \in S$, there exists $T \in \mathcal{MV}_v$ with $j \in T$ and $|S| \ge |T|$, then $\sigma_i^{0-1}(N, v) \le \sigma_j^{0-1}(N, v)$.

Setting and definitions Motivation and Proposal

How to define sufficient values on BFs?

Definition

$$\sigma_i^{0-1}(\boldsymbol{N}, \boldsymbol{v}) := \max_{\boldsymbol{S} \in \mathcal{MW}_{\boldsymbol{V}}: \ \boldsymbol{S} \ni i} \frac{1}{|\boldsymbol{S}|}.$$

Illustration

$$v_{\wedge}(S) = 1 \text{ iff } (1 \in S) \land (2 \in S) \text{ and } v_{\vee}(S) = 1 \text{ iff } (1 \in S) \lor (2 \in S)$$

Prime Implicants	Game Theory
$\mathcal{MW}_{v_{\wedge}} = \{\{1,2\}\}$	$\sigma_1^{ extsf{0-1}}(\textit{N},\textit{v}_\wedge)=\sigma_2^{ extsf{0-1}}(\textit{N},\textit{v}_\wedge)={}^1\!/{}^2$
$\mathcal{MW}_{v_\vee}=\{\{1\},\{2\}\}$	$\sigma_1^{0-1}(\pmb{N},\pmb{v}_ee)=\sigma_2^{0-1}(\pmb{N},\pmb{v}_ee)=1$

Lemma

Value σ^{0-1} is sufficient.

Definition & Properties Construction of the optimal coalition

Outline

Context and Motivation

Case of Boolean FunctionsSetting and definitions

Motivation and Proposal

- Definition & Properties
- Construction of the optimal coalition

Definition & Properties Construction of the optimal coalition

Outline

Context and Motivation

Case of Boolean Functions
 Setting and definitions
 Matination and Proposal

- Motivation and Proposal
- Case of Pseudo-Boolean Functions
 Definition & Properties

Construction of the optimal coalition

Definition & Properties Construction of the optimal coalition

How to define sufficient values on PBFs?

How to extend σ^{0-1} to PBFs?

• Symmetry: players are no more symmetric in a \mathcal{MW}_{ν} .

 \gg Replace $\frac{1}{|S|}$ by $\phi_i(S, v_{|S})$.

• \mathcal{MW}_{v} : no more defined.

 \gg Replace the min over elements of \mathcal{MW}_{ν} to any coalition.

Definition 0-1 games	Definition on general games
$\sigma_i^{o-1}(N, v) := \max_{S \in \mathcal{MW}_{V}: S \ni i} rac{1}{ S }$	$\sigma^{\phi}_i(\pmb{N},\pmb{v}):=\max_{\pmb{S} i i}\phi_i(\pmb{S},\pmb{v}_{ \pmb{S}})$

Lemma

For any 0-1 game *v*, we have But

$$\sigma_i^{\phi^{\mathrm{PD}}}(\boldsymbol{N},\boldsymbol{v}) = \sigma_i^{0-1}(\boldsymbol{N},\boldsymbol{v}), \ \sigma_i^{\phi^{\mathrm{Sh}}}(\boldsymbol{N},\boldsymbol{v}) \neq \sigma_i^{0-1}(\boldsymbol{N},\boldsymbol{v}).$$

Definition & Properties Construction of the optimal coalition

How to define sufficient values on PBFs?

Illustration

Definition & Properties Construction of the optimal coalition

Properties

Null Player (NP)	Lemma
$\phi_i(N, v) = 0$ whenever <i>i</i> is <i>null</i> for <i>v</i> (i.e. $v(S \cup \{i\}) = v(S)$ for all $S \subseteq N \setminus \{i\}$).	If ϕ satisfies NP, so does σ^{ϕ}
Efficiency (E)	1
$\sum_{i\in N}\phi_i(N,v)=v(N).$	
Super Efficiency (SE)	Lemma
$\sum_{i\in N}\phi_i(N,v)\geq v(N).$	If ϕ satisfies E, then σ^{ϕ} satisfies SE.
Essential Singleton (ES)	Lemma
$\phi_i(N, v) = v(N)$ whenever $v(\{i\}) = v(N)$.	If ϕ satisfies E , then σ^{ϕ} satisfies ES

Definition & Properties Construction of the optimal coalition

Properties

Equal Treatment Property (ETP)	Lemma
$\phi_i(N, v) = \phi_j(N, v)$ whenever $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq N \setminus \{i, j\}$.	If ϕ satisfies ETP, so does σ^{ϕ}

Subset Dominance (SD)	Lemma
$\phi_i(\mathcal{S}, \mathbf{v}) \geq \phi_i(\mathcal{S}', \mathbf{v}) ext{ for all } \mathcal{S}' \subseteq \mathcal{S}.$	σ^{ϕ} satisfies SD

Definition & Properties Construction of the optimal coalition

Outline

Context and Motivation

Case of Boolean Functions
 Setting and definitions
 Matination and Proposal

- Motivation and Proposal
- Case of Pseudo-Boolean Functions
 Definition & Properties
 - Construction of the optimal coalition

A priori identification of the coalition realizing the max σ^{ϕ}

Problem statement:

How to identify a coalition realizing the maximum of the max in $I(N, v) := \sigma^{\phi}(N, v)$ without knowing explicitly ϕ ?

Definition:

$$\mathcal{S}_i(\boldsymbol{\mathsf{N}}, \boldsymbol{\mathsf{v}}) = \Big\{ \boldsymbol{S} \ni i \text{ such that } \phi_i(\boldsymbol{S}, \boldsymbol{\mathsf{v}}_{|\boldsymbol{S}}) \ge \phi_i(\boldsymbol{\mathcal{T}}, \boldsymbol{\mathsf{v}}_{|\boldsymbol{\mathcal{T}}}) \ \forall \boldsymbol{\mathcal{T}} \ni i \Big\}.$$

- $\mathcal{R}^{i,T}$: $\mathcal{G}(N) \to \mathcal{G}(N)$ defined for $T \subseteq N$ with $T \ni i$.
- $\mathcal{T}_i(N, v) = \{T \ni i \text{ s.t. } I_i(N, \mathcal{R}^{i,T}(v)) = I_i(N, v)\}$
- $\underline{\mathcal{T}}_i(N, v)$: minimal elements of $\mathcal{T}_i(N, v)$ in the sense of \subseteq .

Definition & Properties Construction of the optimal coalition

A priori identification of the coalition realizing the max σ^{ϕ}

Idea of $\mathcal{R}^{i,T}$: Modify *v* outside *T* so that $\max_{T \supseteq S} \phi_i(S, v_{|S})$ is very small.

Christophe Labreuche

Definition & Properties Construction of the optimal coalition

A priori identification of the coalition realizing the max σ^{ϕ}

Illustration

	$I_i(N, \mathcal{R}^{i,T}(v))$		
Т	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3
$\{1, 2, 3\}$	3	2	2
{1,2}	3	1	×
$\{1, 3\}$	9/4	×	1
$\{2, 3\}$	×	2	2
{1 }	3	×	×
{2 }	×	1	×
{3 }	×	×	1

• For
$$i = 1$$
: $\mathcal{T}_1(N, v) = \{\{1, 2, 3\}, \{1, 2\}, \{1\}\}$ and $\mathcal{T}_1(N, v) = \{\{1\}\}$
• For $i = 2$: $\mathcal{T}_2(N, v) = \{\{1, 2, 3\}, \{2, 3\}\}$ and $\mathcal{T}_2(N, v) = \{\{2, 3\}\}$
• For $i = 3$: $\mathcal{T}_3(N, v) = \{\{1, 2, 3\}, \{2, 3\}\}$ and $\mathcal{T}_3(N, v) = \{\{2, 3\}\}$

Definition & Properties Construction of the optimal coalition

Are these axioms sufficient to derive I?

Lemma]

 $\underline{\mathcal{T}}_i(N, v) \subseteq \mathcal{S}_i(N, v) \subseteq \overline{\mathcal{T}}_i(N, v).$

Definition & Properties Construction of the optimal coalition

Conclusion

Synthesis

- Values do not represent the idea of sufficient explanation
- σ^{0-1} : sufficient value restricted to 0-1 games
- σ^{ϕ} : sufficient value for general games
 - It uses a standard value ϕ

Extensions

- Non-Boolean variables
- Other baseline values