Explanation of Pseudo-Boolean Functions using Cooperative Game Theory and Prime Implicants

C. Labreuche ${ }^{1,2}$

${ }^{1}$ THALES Research \& Technology, Palaiseau, France
${ }^{2}$ SINCLAIR AI Lab, Palaiseau, France
email: christophe.labreuche@thalesgroup.com

Outline

(1) Context and Motivation
(2) Case of Boolean Functions

- Setting and definitions
- Motivation and Proposal
(3) Case of Pseudo-Boolean Functions
- Definition \& Properties
- Construction of the optimal coalition

Two different explanations of a function f applied on an instance x

Formal approaches - Sufficient Explanations

- Find the caracteristics in x that are sufficient to get the outcome $f(x)$
- Process of generalizing x (removing values on attributes) while keeping the same outcome $f(x)$

CONS

- Restricted to Boolean (discrete) output

PROS

- Clear meaning
- Actionable explanation

Illustration with 2 features: $x=$ (true, true)

Is the subset SUFFICIENT?	1 alone	2 alone	1,2 together
$f=A N D$	NO	NO	YES
$f=O R$	YES	YES	YES

Two different explanations of a function f applied on an instance x

Heuristics - Feature attribution

- Allocate a contribution level of each attribute of x in $f(x)$

CONS

PROS

- What to do with these numbers?
- Cannot represent the idea of sufficiency
- Highlights the most important features
- Model agnostic

Illustration with 2 features

Cannot distinguish between AND and OR operators!

Aim

Aim of the work

Define a feature attribution approach representing sufficiency.

- If a single feature is sufficient, it is enough to select it!

Outline

(1) Context and Motivation

2 Case of Boolean Functions

- Setting and definitions
- Motivation and Proposal

3 Case of Pseudo-Boolean Functions

- Definition \& Properties
- Construction of the optimal coalition

Outline

(1) Context and Motivation
(2) Case of Boolean Functions

- Setting and definitions
- Motivation and Proposal

3 Case of Pseudo-Boolean Functions

- Definition \& Properties
- Construction of the optimal coalition

Setting

- $N=\{1, \ldots, n\}$: index set of attributes/features.
- We assume Boolean variables/features.
- $D=\{0,1\}^{N}$: set of alternatives/instances.

Boolean Function (BF)

0-1 Game

$A B F$ is a function $f: D \rightarrow\{0,1\}$.
A 0-1 game is a set function $v: 2^{N} \rightarrow\{0,1\}$.

Pseudo-Boolean Function (PBF)

Game

$A P B F$ is a function $f: D \rightarrow \mathbb{R}$.

A game is a set function $v: 2^{N} \rightarrow \mathbb{R}$.

- $f \mapsto v_{f}$ defined by $v_{f}(S)=f\left(1_{S}, 0_{N \backslash S}\right)$.
- v (resp. f) is assumed to be monotone.

Sufficient Explanation: prime implicants \& winning coalitions

```
If: Implicants of f
An implicant is a conjuction of literals 1s s.t.
f(1s, \mp@subsup{x}{N\backslashS}{})=1 for all }x\mathrm{ .
```


\mathcal{W}_{v} : Winning Coalitions

A winning coalition is a subset S s.t. $v(S)=1$.

$\mathcal{M W}_{v}$: Minimal Winning Coalitions

Minimal Winning Coalitions w.r.t. \subseteq.

Irrelevant / mandatory coalition

A variable is null if changing the value on this variable never modifies the output v. A variable is a veto, if all winning coalitions include this variable.

```
f(x)= \mp@subsup{x}{1}{}\wedge(\mp@subsup{x}{2}{}\vee\mp@subsup{x}{3}{})\mathrm{ on }N={1,2,3,4}
```



```
and }\mathcal{P}\mp@subsup{\mathcal{I}}{f}{}={\mp@subsup{1}{{1,2}}{},\mp@subsup{1}{{1,3}}{}}}
Feature 4 is irrelevant and 1 is mandatory.
```

$v(S)=1$ iff $(1 \in S) \wedge[(2 \in S) \vee(3 \in S)]$
$\mathcal{W}_{v}=$
$\{\{1,2\},\{1,3\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{1,2,3,4\}\}$ and $\mathcal{M} \mathcal{W}_{v}=\{\{1,2\},\{1,3\}\}$.

Heuristic Explanation: feature attribution

How to distribute the total worth $v(N)$ among the players?

Shapley value

$$
\begin{aligned}
& \phi_{i}^{\mathrm{Sh}}(N, v)= \\
& \sum_{S \subseteq N \backslash i} \frac{(n-|S|-1)!|S|!!}{n!}[v(S \cup\{i\})-v(S)]
\end{aligned}
$$

Proportional Division

$\phi_{i}^{\mathrm{PD}}(N, v)=\frac{v(\{i\})}{\sum_{j \in N} v(\{j\})} v(N)$

Outline

(1) Context and Motivation
(2) Case of Boolean Functions

- Setting and definitions
- Motivation and Proposal

3 Case of Pseudo-Boolean Functions

- Definition \& Properties
- Construction of the optimal coalition

Values cannot represent sufficiency

```
Illustration with \(N=\{1,2\}\)
    \(v_{\wedge}(S)=1\) iff \((1 \in S) \wedge(2 \in S) \quad\) and \(\quad v_{\vee}(S)=1\) iff \((1 \in S) \vee(2 \in S)\).
\begin{tabular}{|l|l|}
\hline Prime Implicants & Game Theory \\
\hline \(\mathcal{M} \mathcal{W}_{v_{\wedge}}=\{\{1,2\}\}\) & \(\phi_{1}\left(N, v_{\wedge}\right)=\phi_{2}\left(N, v_{\wedge}\right)=1 / 2\) \\
\(\mathcal{M} \mathcal{W}_{v_{v}}=\{\{1\},\{2\}\}\) & \(\phi_{1}\left(N, v_{\vee}\right)=\phi_{2}\left(N, v_{v}\right)=1 / 2\) \\
\hline
\end{tabular}
```


Values cannot represent sufficiency

Sufficient Feature Contribution

A value σ^{0-1} on BFs is sufficient if
(i) if i is null (i.e. i is in no $\mathcal{M} \mathcal{V}_{v}$), then $\sigma_{i}^{0-1}(N, v)=0$,
(ii) ${ }_{a}$ If $\{i\} \in \mathcal{M} \mathcal{V}_{v}$ then $\sigma_{i}^{0-1}(N, v)=1$,
(ii) $_{b}$ If i is a veto (i.e. i is in all $\mathcal{M} \mathcal{V}_{v}$), then its influence cannot be smaller than that of any other player,
(iii) For $i, j \in N$: If for all $S \in \mathcal{M} \mathcal{W}_{v}$ with $i \in S$, there exists $T \in \mathcal{M} \mathcal{V}_{v}$ with $j \in T$ and $|S| \geq|T|$, then $\sigma_{i}^{0-1}(N, v) \leq \sigma_{j}^{0-1}(N, v)$.

How to define sufficient values on BFs?

Definition

$$
\sigma_{i}^{0-1}(N, v):=\max _{S \in \mathcal{M} \mathcal{W}_{v}: S \ni i} \frac{1}{|S|}
$$

Illustration

$$
v_{\wedge}(S)=1 \text { iff }(1 \in S) \wedge(2 \in S) \quad \text { and } \quad v_{\vee}(S)=1 \text { iff }(1 \in S) \vee(2 \in S)
$$

Prime Implicants	Game Theory
$\mathcal{M} \mathcal{W}_{v_{\wedge}}=\{\{1,2\}\}$	$\sigma_{1}^{0-1}\left(N, v_{\wedge}\right)=\sigma_{2}^{0-1}\left(N, v_{\wedge}\right)=1 / 2$
$\mathcal{M} \mathcal{W}_{v_{v}}=\{\{1\},\{2\}\}$	$\sigma_{1}^{0-1}\left(N, v_{\vee}\right)=\sigma_{2}^{0-1}\left(N, v_{\vee}\right)=1$

Lemma

Value σ^{0-1} is sufficient.

Outline

(1) Context and Motivation

2 Case of Boolean Functions

- Setting and definitions
- Motivation and Proposal
(3) Case of Pseudo-Boolean Functions
- Definition \& Properties
- Construction of the optimal coalition

Outline

(1) Context and Motivation

2 Case of Boolean Functions

- Setting and definitions
- Motivation and Proposal
(3) Case of Pseudo-Boolean Functions
- Definition \& Properties
- Construction of the optimal coalition

How to define sufficient values on PBFs?

How to extend σ^{0-1} to PBFs?

- Symmetry: players are no more symmetric in a $\mathcal{M} \mathcal{W}_{v}$.
\gg Replace $\frac{1}{|S|}$ by $\phi_{i}\left(S, v_{\mid S}\right)$.
- $\mathcal{M W}_{v}$: no more defined.
\gg Replace the min over elements of $\mathcal{M W}_{v}$ to any coalition.

Definition 0-1 games

Definition on general games

$\sigma_{i}^{\phi}(N, v):=\max _{S \ni i} \phi_{i}\left(S, v_{\mid S}\right)$

Lemma

For any 0-1 game v, we have
$\sigma_{i}^{\phi^{\mathrm{PD}}}(N, v)=\sigma_{i}^{0-1}(N, v)$,
But
$\sigma_{i}^{\phi^{\mathrm{Sh}}}(N, v) \neq \sigma_{i}^{0-1}(N, v)$.

How to define sufficient values on PBFs?

Illustration

	ϕ_{1}^{PD}	ϕ_{2}^{PD}	ϕ_{3}^{PD}
For $\{1,2,3\}$	$\mathbf{3}$	1	1
For $\{1,2\}$	$\mathbf{3}$	1	\times
For $\{1,3\}$	$9 / 4$	\times	$3 / 4$
For $\{2,3\}$	\times	$\mathbf{2}$	$\mathbf{2}$
For $\{1\}$	$\mathbf{3}$	\times	\times
For $\{2\}$	\times	1	\times
For $\{3\}$	\times	\times	1
$\sigma^{\phi^{\mathrm{PD}}}=\max \cdots$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$

Properties

Null Player (NP)

Lemma

$\phi_{i}(N, v)=0$ whenever i is null for v (i.e. $v(S \cup\{i\})=v(S)$ for all $S \subseteq N \backslash\{i\})$.

```
If }\phi\mathrm{ satisfies NP, so does }\mp@subsup{\sigma}{}{\phi
```


Efficiency (E)

$\sum_{i \in N} \phi_{i}(N, v)=v(N)$.
Super Efficiency (SE)
$\sum_{i \in N} \phi_{i}(N, v) \geq v(N)$

Lemma

If ϕ satisfies \mathbf{E}, then σ^{ϕ} satisfies $\mathbf{S E}$.

Essential Singleton (ES)

$\phi_{i}(N, v)=v(N)$ whenever $v(\{i\})=v(N)$.

Lemma

If ϕ satisfies \mathbf{E}, then σ^{ϕ} satisfies $\mathbf{E S}$

Properties

$$
\begin{aligned}
& \text { Equal Treatment Property (ETP) } \\
& \phi_{i}(N, v)=\phi_{j}(N, v) \text { whenever } \\
& v(S \cup\{i\})=v(S \cup\{j\}) \text { for all } S \subseteq N \backslash\{i, j\}
\end{aligned}
$$

Lemma

```
If }\phi\mathrm{ satisfies ETP, so does }\mp@subsup{\sigma}{}{\phi
```


Subset Dominance (SD)

Lemma

$\phi_{i}(S, v) \geq \phi_{i}\left(S^{\prime}, v\right)$ for all $S^{\prime} \subseteq S$.

Outline

(1) Context and Motivation
(2) Case of Boolean Functions

- Setting and definitions
- Motivation and Proposal

3 Case of Pseudo-Boolean Functions

- Definition \& Properties
- Construction of the optimal coalition

A priori identification of the coalition realizing the $\max \sigma^{\phi}$

Problem statement:

How to identify a coalition realizing the maximum of the max in $I(N, v):=\sigma^{\phi}(N, v)$ without knowing explicitly ϕ ?

Definition:

$$
\mathcal{S}_{i}(N, v)=\left\{S \ni i \text { such that } \phi_{i}\left(S, v_{\mid S}\right) \geq \phi_{i}\left(T, v_{\mid T}\right) \forall T \ni i\right\}
$$

- $\mathcal{R}^{i, T}: \mathcal{G}(N) \rightarrow \mathcal{G}(N)$ defined for $T \subseteq N$ with $T \ni i$.
- $\mathcal{T}_{i}(N, v)=\left\{T \ni i\right.$ s.t. $\left.I_{i}\left(N, \mathcal{R}^{i, T}(v)\right)=I_{i}(N, v)\right\}$
- $\underline{\mathcal{T}}_{i}(N, v)$: minimal elements of $\mathcal{T}_{i}(N, v)$ in the sense of \subseteq.

A priori identification of the coalition realizing the $\max \sigma^{\phi}$

Idea of $\mathcal{R}^{i, T}$: Modify v outside T so that $\max _{T \supseteq S} \phi_{i}\left(S, v_{\mid S}\right)$ is very small.

```
R
```

$$
v^{\prime}(T)=\left\{\begin{array}{l}
\vartheta \text { if } T \subseteq N \backslash S \text { and }|T|=1 \\
v(T) \text { otherwise }
\end{array}\right.
$$

Illustration on $\mathcal{R}^{1,\{1,2\}}$

$v(\{2,3\})=4$
$v(\{3\})=\mathbf{1 0}$
$v(\{2\})=1$

A priori identification of the coalition realizing the $\max \sigma^{\phi}$

Illustration

T	$l_{i}\left(N, \mathcal{R}^{i, T}(v)\right)$		
	$i=1$	$i=2$	$i=3$
$\{1,2,3\}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$
$\{1,2\}$	$\mathbf{3}$	$\mathbf{1}$	\times
$\{1,3\}$	$9 / 4$	\times	$\mathbf{1}$
$\{2,3\}$	\times	$\mathbf{2}$	$\mathbf{2}$
$\{1\}$	$\mathbf{3}$	\times	\times
$\{2\}$	\times	1	\times
$\{3\}$	\times	\times	1

- For $i=1: \mathcal{T}_{1}(N, v)=\{\{1,2,3\},\{1,2\},\{1\}\}$ and $\mathcal{I}_{1}(N, v)=\{\{1\}\}$
- For $i=2: \mathcal{T}_{2}(N, v)=\{\{1,2,3\},\{2,3\}\}$ and $\mathcal{I}_{2}(N, v)=\{\{2,3\}\}$
- For $i=3: \mathcal{T}_{3}(N, v)=\{\{1,2,3\},\{2,3\}\}$ and $\mathcal{I}_{3}(N, v)=\{\{2,3\}\}$

Are these axioms sufficient to derive /?

Lemma]

$$
\underline{\mathcal{I}}_{i}(N, v) \subseteq \mathcal{S}_{i}(N, v) \subseteq \mathcal{T}_{i}(N, v) .
$$

Conclusion

Synthesis

- Values do not represent the idea of sufficient explanation
- σ^{0-1} : sufficient value restricted to 0-1 games
- σ^{ϕ} : sufficient value for general games
- It uses a standard value ϕ

Extensions

- Non-Boolean variables
- Other baseline values

