TOWARDS A PRINCIPLE-BASED AP-PROACH FOR CASE-BASED REASONING

Leila Amgoud, Vivien Beuselinck

ANITI, UNIVERSITÉ FÉDÉRALE (FRANCE)

09/10/2022

Case-based reasoning (CBR) is the process of solving new problems based on the solutions of **similar** past problems.

- Many practical applications (Law, Medicine, ...).
- A plethora of CBR models.
- Few works on theoretical foundations of CBR.
- Lack of formal comparison with non monotonic reasoning (NMR).

Case-based reasoning (CBR) is the process of solving new problems based on the solutions of **similar** past problems.

- Many practical applications (Law, Medicine, ...).
- A plethora of CBR models.
- Few works on theoretical foundations of CBR.
- Lack of formal comparison with non monotonic reasoning (NMR).

The paper bridges the two gaps.

- Introduction
- Basic assumption of CBR => 4 notions
- Axioms for CBR
- Summary

Cases	Years old	Power	Mileage	Equip	Shape	Price
C ₁	1	1300	20 000	poor	good	8000
C ₂	2	1600	30 000	excellent	poor	7000
<i>C</i> ₃	2	1600	40 000	good	good	5000
C ₄	3	1500	60 000	excellent	poor	5000
Cn	2	1600	50 000	poor	good	?

¹Didier Dubois, Francesc Esteva, Pere Garcia, Lluís Godo, Ramón López de Mántaras, Henri Prade. Case-Based Reasoning: A Fuzzy Approach Fuzzy Logic in Artificial Intelligence. IJCAI Workshop 1997

Features : $\mathcal{F} = \{f_1, \dots, f_n, f\}$

- Domains : dom(x) returns the domain of feature $x \in \mathcal{F}$. dom(f) is the set of possible outcomes
- **Literals**: Every pair (f, v) such that $f \in \mathcal{F} \setminus \{f\}$ and $v \in dom(f)$
- Instances : A set of literals, where each feature f₁,..., f_n appears exactly once.
 Inst : The set of all possible instances.
- Case : $c = \langle I, v \rangle$ such that $I \in \text{Inst}$ and $v \in \text{dom}(f) \cup \{?\}$ Past Case : When $v \in \text{dom}(f)$ New Case : when v = ?
- Case Base : A set of n past cases.

Two similarity measures

- (Sⁱ) : For comparing attributes-values.
- (S^o) : For comparing prices.

Two thresholds :

- *x* is dissimilar to *y* iff $S^i(x, y) < \delta^i$
- v is dissimilar to v' iff $S^o(v, v') < \delta^o$

Example :

$$\mathbf{S}^{o}(u,v) = \begin{cases} 1 & \text{if } |u-v| \le 500 \\ 0 & \text{if } |u-v| \ge 2000 \\ 1 - \frac{1}{1500} * (|u-v| - 500) & \text{if } 500 < |u-v| < 2000 \end{cases}$$

Theory

A theory is a tuple $\mathbf{T} = \langle \mathcal{F}, \operatorname{dom}, \mathbf{S}^{i}, \mathbf{S}^{o}, \delta^{i}, \delta^{o} \rangle$.

"The more similar the cases, the more similar their outcomes".

Four notions that capture the assumption.

- Consistency
- Strong Coherence
- Weak Coherence
- Regularity

Idea: Similar input data receive similar outcomes

Consistency

A case base Σ is **consistent** iff $\forall \langle I, v \rangle, \langle I', v' \rangle \in \Sigma$, if $S^i(I, I') = 1$ then $S^o(v, v') = 1$. It is inconsistent otherwise.

Property

If a case base Σ is consistent, then $\forall \langle l, v \rangle, \langle l', v' \rangle \in \Sigma$, if l = l', then $\mathbf{S}^o(v, v') = 1$.

STRONG COHERENCE

Strong Coherence

A case base Σ is strongly coherent iff $\forall \langle l, v \rangle, \langle l', v' \rangle \in \Sigma$, $S^{i}(l, l') \leq S^{o}(v, v')$.

Example

Strong Coherence is violated because $S^{o}(C_1, C_3) = 0$ (Case |u - v| > 2000 with |8000 - 5000| = 3000)

Property

Let Σ be a strongly coherent case base. For all $\langle I, v \rangle, \langle I', v' \rangle \in \Sigma$, if $S^i(I, I') = 1$, then $S^o(v, v') = 1$.

Idea: similar input data should receive similar outcomes

Weak Coherence

A case-base Σ is weakly coherent iff $\forall \langle I, v \rangle$, $\langle I', v' \rangle \in \Sigma$, if $\mathbf{S}^{i}(I, I') \geq \delta^{i}$, then $\mathbf{S}^{\circ}(v, v') \geq \delta^{\circ}$.

Example

With $\delta_i = \frac{4}{5}$ and $\delta_o = \frac{3}{5}$, the case base satisfies Weak Coherence.

Suppose we have a case base on student grades. There are 4 attributes corresponding to courses with a mark; the outcome is an appreciation whose range consists of 4 qualitative levels. The similarity measure S^i takes the minimal value returned by S on the four courses. Assume Σ contains two students who got respectively $I = \langle 20, 20, 20, 20 \rangle$ and v = "excellent" as global appreciation, and l' = (20, 20, 15, 15) with appreciation v' ="good". Hence, $S^{i}(I, I') = 0.75$ and $S^{o}(v, v') = \frac{2}{3}$. Note that the base is not strongly coherent. In order to be coherent, $S^{o}(v, v')$ should be equal to 1, which is not reasonable in the example as the two instances are different and deserve different appreciations. Furthermore, the scale of S^o does not have an intermediate value between $\frac{2}{3}$ and 1.

Regularity

A case-base Σ is **regular** iff $\forall \langle I, v \rangle$, $\langle I', v' \rangle$, $\langle I'', v'' \rangle \in \Sigma$, if $S^{i}(I, I') \ge S^{i}(I, I'')$ then $S^{o}(v, v') \ge S^{o}(v, v'')$.

Example

Regularity is violated because $S^i(C_2,C_3)>S^i(C_2,C_1)$ but $S^o(C_2,C_3)< S^o(C_2,C_1).$

- Strong coherence implies consistency
- Strong coherence implies Weak Coherence if $\delta^i \geq \delta^o$
- Others are independent.

CBR model

Let $\mathbf{T} = \langle \mathcal{F}, \operatorname{dom}, \mathbf{S}^i, \mathbf{S}^o, \delta^i, \delta^o \rangle$ be a theory. A CBR model is a function R mapping every case base Σ and new case $\langle I, ? \rangle$ into a set $O \subseteq \operatorname{dom}(f) \cup \{\operatorname{Und}\}$ such that $O \neq \emptyset$ and either $O = \{\operatorname{Und}\}$ or $O \subseteq \operatorname{dom}(f)$. We write $\Sigma \oplus \langle I, ? \rangle \succ_{\mathsf{T},\mathsf{R}} O$.

CBR AXIOMS

Strong Completeness

```
\Sigma \oplus \langle I,?\rangle \hspace{-0.5mm}\sim_{T,R} \hspace{-0.5mm} \textit{O with O} \subseteq dom(f).
```

Weak Completeness

$$\Sigma \oplus \langle I, ? \rangle \sim_{\mathbf{T}, \mathsf{R}} \{\mathsf{Und}\} \text{ iff } \forall \langle I, v \rangle \in \Sigma, \, \mathbf{S}^{i}(I_{n}, I) < \delta^{i}.$$

Property

- *if a model* **R** *satisfies weak completeness, then* $\emptyset \oplus \langle I, ? \rangle \succ_{\mathsf{T},\mathsf{R}} \{\mathsf{Und}\}.$
- Strong completeness and weak completeness are incompatible

Consistency

Let Σ be consistent and $\Sigma \oplus \langle I, ? \rangle \sim_{T,R} O$ such that $O \neq \{Und\}$. For any $v \in O$, $\Sigma \cup \{\langle I_n, v \rangle\}$ is consistent.

Strong Coherence

Let Σ be strongly coherent and $\Sigma \oplus \langle I, ? \rangle \succ_{T,R} O$ such that $O \neq \{$ Und $\}$. For any $v \in O$, $\Sigma \cup \{\langle I_n, v \rangle\}$ is strongly coherent.

CBR AXIOMS (CONT.)

Weak Coherence

Let Σ be weakly coherent and $\Sigma \oplus \langle I, ? \rangle \succ_{T,R} O$ such that $O \neq \{$ Und $\}$. For any $v \in O$, $\Sigma \cup \{\langle I_n, v \rangle\}$ is weakly coherent.

Property

Let $\mathbf{T} = \langle \mathcal{F}, \text{dom}, \mathbf{S}^i, \mathbf{S}^o, \delta^i, \delta^o \rangle$ be a theory such that $\delta^i \geq \delta^o$. If a CBR model satisfies strong coherence, then it satisfies weak coherence.

Regularity

Let Σ be regular and $\Sigma \oplus \langle I, ? \rangle \succ_{T,R} O$ such that $O \neq \{Und\}$. For any $v \in O$, $\Sigma \cup \{\langle I_n, v \rangle\}$ is regular.

CBR AXIOMS (CONT.)

Monotonicity

$$\left(\begin{array}{c} \Sigma \oplus \langle I, ? \rangle \triangleright_{\mathsf{T},\mathsf{R}} \mathsf{O} \\ \\ \Sigma \subseteq \Sigma' \end{array} \right) \Longrightarrow \Sigma' \oplus \langle I, ? \rangle \triangleright_{\mathsf{T},\mathsf{R}} \mathsf{O}$$

Property

If a CBR model satisfies weak completeness, then it violates monotonicity.

CBR AXIOMS (CONT.)

Cautious Monotonicity

$$\begin{array}{c} \left(\begin{array}{c} \Sigma \oplus \langle I, ? \rangle \triangleright_{\mathsf{T},\mathsf{R}} \{ \mathsf{V} \} \\ \\ \left(\begin{array}{c} \Sigma \oplus \langle I', ? \rangle \succ_{\mathsf{T},\mathsf{R}} \{ \mathsf{V}' \} \end{array} \right) \end{array} \Longrightarrow \Sigma \cup \left\{ \langle I, \mathsf{V} \rangle \right\} \oplus \langle I', ? \rangle \succ_{\mathsf{T},\mathsf{R}} \{ \mathsf{V}' \} \end{array}$$

Property

Strong coherence and cautious monotonicity are incompatible.

Conclusion

- A proposal of some axioms for CBR.
- Highlighting some differences with non Monotonic Reasoning.

Challenges

- More axioms for CBR.
- Characterization of formal models that satisfy the axioms.