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Context: Human-oriented XAl

» “Looking at how humans explain to each other can serve as a
useful starting point for explanation in Al”
[from Explanation in Al: Insights from the social sciences.
Miller; AlJ 2019



Context: Human-oriented XAl

» “Looking at how humans explain to each other can serve as a
useful starting point for explanation in Al”
[from Explanation in Al: Insights from the social sciences.
Miller; AlJ 2019

» “The majority of what might look like causal attributions turn
out to look like argumentative claim-backings”
[from Explaining in conversation: Towards an argument model.
Antaki,Leudar. Journal of Social Psychology 1992



Context: Argumentation
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Context: Argumentation

s

> Various argumentation

Problem Solution
frameworks, e.g. Abstract
(symbolic) Automated Reasoning i d) Argumentatlon (AA) and
: = argumentation semantics/ Automate: .
Representation ;systemt Reasoning output ASSU m ptIO n- Based
= argumentation P . .
Framework & Argumentation (ABA), with

lots of applications

» Can these argumentation

Figure: Argumentation for KR frameworks be learnt?

In this talk | will present two approaches to learn AA and ABA
frameworks from “examples”



Argumentation: An illustration

Am | eligible to claim for UK & European Breakdown & Recovery Assistance?

You need to think about whether the insurance meets your needs and whether you can
when you need to

Car regrsiered
mmmmsmmm ~
her permission. Where the account & in joint

Motorcycles,
names then up o 2 private cars can be covered mmmmmmwmmmh
v mwamwmum hire and reward purposes (such as tads)
with national recovery and onward travel mmamm-wMummmu
+  No call out hmit | maintained in line with manufacturer quidelines
W No exress payable |« Vehicles that are more than 7 metres in length, 2.3 metres
wide, 3 metres high and weigh more than 3.5 tonnes when
fully loaded

| (z Nationwide

DA 7/34
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COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in
any private car they are travelling in

NOT COVERED FOR: private cars not registered to the account
holder(s) unless in the vehicle at the time of the breakdown

Mary: account holder traveling in friend’s car; car breaks
down. Is Mary covered?
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Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in
any private car they are travelling in

NOT COVERED FOR: private cars not registered to the account
holder(s) unless in the vehicle at the time of the breakdown

Mary: account holder traveling in friend’s car; car breaks
down. Is Mary covered?
» there is an argument c(mary) for Mary covered (as travelling
in private car)
> there is an objection (attack) against this argument, by an
argument nc(mary) for Mary not covered (as car not
registered to Mary)
> there is an objection (attack) against this argument, by an
argument in(mary) for Mary in car at time of breakdown

c(mary) is (dialectically) “good”/“strong” and Mary is covered



Part |: Learning Abstract Argumentation Frameworks

1. Background (AA frameworks)
2. Problem
3. Solution
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Background: AA frameworks
(Args, Att) where

» Args is a set (the arguments)
> Att C Args x Args is a binary relation over Args
c(mary) «——— nc(mary) —— in(mary)

Semantics for AA="Recipes” for determining (dialectically) “good”
sets of arguments (extensions)
Grounded extension

» Let Gy be the set of unattacked arguments in Args.

» For each i € N, let G;j11 C Args be the set of arguments that
G; defends (by attacking all arguments attacking G;).

Then G = UjenG; is the grounded extension of (Args, Att).

{c(mary), in(mary)} is grounded, {in(mary)} is not
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1. When a young man complained that he was not allowed to use
a bicycle in the park, the council decided in his favour.
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3. When an ambulance entered the park to rescue an elderly
person who was feeling sick, it was considered acceptable.

4. When an unspecified vehicle entered the park to rescue a sick
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Problem: An example (thanks to Guilherme Paulino-Passos)

> Past cases:
1. young man'’s bicycle
2. motorized bicycle
3. ambulance to rescue sick elderly person
4. unspecified vehicle to rescue sick person
> New case:
» a pickup truck enters the park in order to rescue a sick person

How will the park council decide on this new case?
(How can we use the past cases to reason about a new one?)



Problem

Given
» a dataset D of cases of the form (S, 0)
(S features, o € {+,—} outcome)
e.g. D ={({health_emergency, motor, ambulance}, +),
({bicycle, motor}, —)}
» D is consistent iff there is no S such that (S,+), (S,—) € D.
Suppose D is consistent.
» a default outcome d € {+,—}

eg d=-—



Problem

Given
» a dataset D of cases of the form (S, 0)
(S features, o € {+,—} outcome)

e.g. D ={({health_emergency, motor, ambulance}, +),
({bicycle, motor}, —)}

» D is consistent iff there is no S such that (S,+), (S,—) € D.
Suppose D is consistent.

» a default outcome d € {+,—}
eg d=-—
Determine/Explain
» the outcome of a focus case (with features) N
e.g. N ={health emergency, motor}



Solution: AA-CBR (Example)

Given

> D= {({b}7 +)7 ({h}7 +)7 ({b7 m}v _)7 ({h7 m, a}7 +)}

(note: D is consistent)
» default outcome: —
» N ={h m}
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Solution: AA-CBR (Example)

Given

> D= {({b}7+)7({h}7+)7({b7 m}v_)7({h7 m, a}7+)}

(note: D is consistent)
» default outcome: —
» N ={h m}

(Args, Att) is: @ @

The grounded extension is G = {({h, m},?), ({h},+)}.
As ({},—) ¢ G, the AA-CBR outcome of ({h, m},?) is +.



General definition: AA Framework

Let Args = DU{(N,?)} U{({},d)}.
» for (X,0x),(Y,oy) e DU{({},d)}. (X,o0x)Att(Y,oy) iff

1. ox # oy, and (different outcomes)
2. YCX, and (specificity)
3. (Z,ox) with Y c Z C X (concision)
» for (Y,oy) € D, (N,?)Att (Y, oy) iff
YZN (irrelevance)

e.g. ({bicycle},+) attacks ({},—),
({health _emergency, motor},?) attacks
({ health__emergency, motor, ambulance}, +)



General definition: Outcomes

We denote the opposite of an outcome o € {+,—} as &, in the
intuitive way:



General definition: Outcomes

We denote the opposite of an outcome o € {+,—} as &, in the

intuitive way:
> o6=—,ifo=+
» 6=+,ifo=—

We say that the outcome for the new case N is:

> d, if ({},d) is in the grounded extension G,

> d, otherwise



General definition: Properties

Definition (Nearest cases)

For a case base CB and a new case N, a past case (X,0x) € CB is
nearest to NV if X C N, and there is no (Y, o0y) € CB such that
YCNand X CY.

Theorem
G contains all the nearest past cases to N.

Theorem (Unique past case)

If there is a unique nearest case (X, 0) to N, then the AA outcome
of N is o.



Explanations in AA-CBR

> Return nearest cases

> typical way in CBR

» shows conflicting evidence in past cases
» Can we do better?

» ldea: use dispute trees



Dispute trees - default outcome

- P:({},-)
({.-) S

@+ @) 0:({b),4)0: ([}, +)
P:({b,m},—P:({b,m},7?)
@ @ @ grounded dispute tree



Dispute trees - non-default outcome

P:({},-)
[T

@+ @) 0= (b}, )0 ({h),+)
P:({b,m},—)
@ maximal dispute tree



Learning AA frameworks: Beyond AA-CBR

N/

E ~ characterisation /D\ a;gl;mentation
extractor ebate miner
/ ~ de /'

ldpy l

P )

) predictor ~ (A‘r‘gs,’v))

dispute between
proponentand explainer
opponent

» Tabular data (discrete)

» Unstructured data (sentiment analysis)



Part Il: Learning ABA Frameworks

1. Background (ABA frameworks and Logic Programming)
2. Problem
3. Solution

Bibliography
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Background: ABA Frameworks

An ABA framework is a tuple (L, R, A, —) where
> (L, R) is a deductive system, with £ a language and R a set
of (inference) rules of the form sy <— s1,...,5m
(m>0,s; € L, for 1 < i< m);
» A C Lis a (non-empty) set of assumptions;
> ~ is a total mapping from A into L, where 3 is the contrary
of a, for a e A.
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Background: ABA Frameworks

An ABA framework is a tuple (L, R, A, —) where

> (L, R) is a deductive system, with £ a language and R a set
of (inference) rules of the form sy <— s1,...,5m
(m>0,s; € L, for 1 < i< m);

» A C Lis a (non-empty) set of assumptions;

> ~ is a total mapping from A into L, where 3 is the contrary
of a, for a e A.

The ABA framework is flat if no assumptions are heads of rules.
Example (using schemata)
> L ={p(X),q(X), r(X),a(X),b(X)|X € {1,2}};
R ={p(X) < a(X), q(X) <« b(X), r(1)<« true};
A ={a(X), b(X)};
a(X) = q(X),  b(X) = r(X).

>
>



Background: Logic programming

Flat ABA frameworks (£, R, A, — ) where L is a set of atoms
amount to (normal) logic programs.



Background: Logic programming

Flat ABA frameworks (£, R, A, — ) where L is a set of atoms
amount to (normal) logic programs.

Example (from previous slide)
> £ = {p(X),q(X), r(X),a(X), (X)X € {1,2}};
R ={p(X) < a(X), q(X) <« b(X), r(1) <« true};
> A={a(X),b(X)};

> a(X) =q(X), b(X)=r(X).

Example (as logic program)
p(X) + not g(X)

q(X) < not r(X)

r(1) <



Background: (flat) ABA/Logic programming semantics

> ABA:
» arguments are deductions of claims using rules and supported
by assumptions,
» attacks are directed at the assumptions in the support of
arguments;
» Abstract Argumentation-style extension-based semantics
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Background: (flat) ABA/Logic programming semantics

> ABA:
» arguments are deductions of claims using rules and supported
by assumptions,
» attacks are directed at the assumptions in the support of
arguments;
» Abstract Argumentation-style extension-based semantics

Example (from earlier slide)
L={..}; R={q(X)<+ b(X), r(1)<« true};
A={.}3 aX)=q(X), bX)=r(X).
» Arguments: {a(X)} F a(X), {b(X)}F q(X), {}Fr(1),
etc
» {} F r(1) attacks {b(1)} F q(1),
{b(1)} F q(1) attacks {a(1)} I a(1),

etc
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Background: (flat) ABA/Logic programming semantics

Various notions of “acceptable” extensions (sets of arguments)

One-to-one correspondence between models of logic
programs and acceptable extensions in flat ABA
e.g. well-founded model ~ grounded extension



Problem: An example (Dimopoulos-Kakas 1995)
> Given
1) Background knowledge (ABA framework):
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penguin(X) < superpenguin(X),
bird(a) <, bird(b) <+,
penguin(c) <, penguin(d) <+,
superpenguin(e) <, superpenguin(f) +}
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Problem: An example (Dimopoulos-Kakas 1995)
> Given
1) Background knowledge (ABA framework):
R ={ bird(X) < penguin(X),
penguin(X) < superpenguin(X),
bird(a) <, bird(b) <+,
penguin(c) <, penguin(d) <+,
superpenguin(e) <, superpenguin(f) +}
2) Positive Examples: {flies(a), flies(b), flies(e), flies(f)}
3) Negative Examples: {flies(c), flies(d)}
» Determine an ABA framework “generalising” the examples
R' = {flies(X) «+ bird(X), a1(X),
c-a1(X) < penguin(X), az(X),
c-ap(X) « superpenguin(X)} UR
A = {o1(X), a2(X)}  with a;(X) = c-a;(X)
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Problem: Formally

» (L, R, A, ) E s indicates that s € L is the claim of an
argument accepted in all or some (stable, grounded, .. .)
extensions of (£, R, A, 7).

> An example e
is covered by (L, R, A, 7 ) iff (L, R, A, > = e and
is not covered by (L, R, A, 7 ) iff (L, R, A, ) [~ e.

» Given background knowledge (£, R, A, ~), positive examples
ET and negative examples £~ (£t NE™ = (),
the goal of ABA learning is to construct (L', R/, A’, —)
with R C R/, AC A" and Va € A, & = @, such that:
> (Existence) (L', R', A’, ') admits at least one extension
(under the chosen ABA semantics),
» (Completeness) Ve € £, (L', R, A', ') = e, and
(Consistency) Ye € £=, (L', R', A', ') ~e.
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>

Equality Removal. Replace a rule p1 : H < eq1, Egs, B in R,
by rule po : H < Egs,B. Thus, R' = (R \ {p1}) U {p2}.

Folding. Given rules p1: H < Egs1, By, B> and

p2: K < Egsi, Eqsp, By in R, replace p; by

p3: H <+ Egsy, K, By. Thus, R' = (R \ {p1}) U {p3}.
Subsumption. Delete from R subsumed rules.

Rote Learning. Given atom p(t), add p: p(X) + X =t to R.
Thus, R' =R U {p}.
Assumption Introduction. Replace p; : H < Egs, B in R by
p2 : H + Egs, B, a(X) where variables in X are taken from
vars(H) U vars(B) and «(X) is a (possibly new) assumption
with contrary x(X). Thus,

> R = (R\{p1}) U{pa},

> A= AU {a(X)},

> o(X) = x(X), and B =5 for all 8 € A.
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Solution: Requirements

> Let (L', R/, A', —) be obtained by applying any of Folding,
Equality Removal and Subsumption to (£, R, A, ) to
modify rules with p in the head.
If(L, R, A, ) | p(t) then (L', R, A", ) E p(t).

» Let p(t1), p(t2) be atoms such that p(t1) # p(t2) and
<£7 R, -’47 7) ): p(tl) and <£7 R, -A> 7> ): p(t2)'
There exists (L', R, A, —') obtained from (L, R, A, ) by
applying Assumption Introduction to modify rules with p in
the head and then Rote Learning to add rules for the
contraries of the assumptions, such that

(LR, A, V= p(t1) and (L', R/, A, ) = p(ta).
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Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5)
step(4,6) <, step(5,2) <, busy(3) <, busy(6) +};

5* = {free(1), free(2), free(5)},

= {free(3), free(4), free(6)};

A

» Rote Learning introduces

free(X) + X =1 (1)
» Folding with the (normalised) step(X,Y) <+ X =1,Y =21in
R gives
free(X) < Y = 2,step(X, Y) (2)

» By Equality Removal, we get
free(X) < step(X,Y) (3)
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An illustration (Continued)
Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5) <+,
step(4,6) <, step(5,2) <, busy(3) <, busy(6) < };
S+ = {free(1), free(2), free(5)},
~ = {free(3), free(4), free(6) };

» Rule (3) free(X) + step(X, Y) covers ET as well as
free(4) € £~. Assumption Introduction gives a(X, Y') with
contrary c-a(X, Y) and replaces (3) by
free(X) < step(X,Y),a(X,Y) (4)
» Then, we add positive and negative examples for c-a(X, Y):
& = {c-a(4,6)},
& ={ca(1,2),c-a(2,4), c-a(2,5), c-a(5,2) }.
> ...
c-a(X,Y) < busy(Y) (6)
The final learnt set of rules is R U {(4),(6)}.



Explanations: Dispute trees?

Mary (m): account holder traveling in friend's car (c); car
breaks down

R: cov(m,c) < ah(m), tr(m,c), pr(c), not =cov(m,c)
—cov(m, c) + —reg(c, m), not cov'(m, c)
cov'(m, c) < in(m, c)
ah(m) « tr(m, c) « pr(c) <
—reg(c, m) in(m, c) <
L :  Herbrand base of R plus (all) NAF literals
A (all) NAF literals
not x = x for all x in the Herbrand base of R



Explanations: Dispute trees?

Mary (m): account holder traveling in friend's car (c); car
breaks down

R: cov(m,c) < ah(m), tr(m,c), pr(c), not =cov(m,c)

—cov(m, c) + —reg(c, m), not cov'(m, c) P : {not —cov(m, c)} F cov(m, c)
cov'(m, c) < in(m, c)
ah(m) «+ tr(m, c) < pr(c) + O : {not cov'(m, c)} F —cov(m, c)
—reg(c, m) in(m, c) < ‘

L Herbrand base of R plus (all) NAF literals P:{}F cov'(m,c)

A (all) NAF literals
not x = x for all x in the Herbrand base of R
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Future Work

» Learning AA frameworks: non-discrete data?
» Learning ABA frameworks:

» Formal guarantees

» Implementation and Experiments

» Comparison with other methods/systems to learn logic
programs/argumentation frameworks

» Learning other ABA instances (beyond logic programming)

Does ABA learning generalise AA learning?
Integration with sub-symbolic machine learning
Explanation extraction and user evaluation

Applications



