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Context: eXplainable AI (XAI)
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Context: Human-oriented XAI

I �Looking at how humans explain to each other can serve as a
useful starting point for explanation in AI�
[from Explanation in AI: Insights from the social sciences.

Miller; AIJ 2019]

I �The majority of what might look like causal attributions turn
out to look like argumentative claim-backings�
[from Explaining in conversation: Towards an argument model.

Antaki,Leudar. Journal of Social Psychology 1992]
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Context: Argumentation

Figure: Argumentation for KR

I Various argumentation
frameworks, e.g. Abstract
Argumentation (AA) and
Assumption-Based
Argumentation (ABA), with
lots of applications

I Can these argumentation

frameworks be learnt?

In this talk I will present two approaches to learn AA and ABA
frameworks from �examples�
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Argumentation: An illustration
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Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in
any private car they are travelling in

NOT COVERED FOR: private cars not registered to the account

holder(s) unless in the vehicle at the time of the breakdown

Mary: account holder traveling in friend's car; car breaks
down. Is Mary covered?

I there is an argument c(mary) for Mary covered (as travelling
in private car)

I there is an objection (attack) against this argument, by an
argument nc(mary) for Mary not covered (as car not
registered to Mary)

I there is an objection (attack) against this argument, by an
argument in(mary) for Mary in car at time of breakdown

c(mary) is (dialectically) �good�/�strong� and Mary is covered
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Part I: Learning Abstract Argumentation Frameworks

1. Background (AA frameworks)

2. Problem

3. Solution

Bibliography

I Dung: On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games.
AIJ 1995

I Cyras, Satoh, Toni: Abstract Argumentation for Case-Based
Reasoning. KR2016

I Cocarascu, Stylianou, Cyras, Toni: Data-Empowered Argumentation
for Dialectically Explainable Predictions. ECAI 2020
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Background: AA frameworks

〈Args,Att〉 where
I Args is a set (the arguments)

I Att ⊆ Args × Args is a binary relation over Args

c(mary) nc(mary) in(mary)

Semantics for AA=�Recipes� for determining (dialectically) �good�
sets of arguments (extensions)

Grounded extension

I Let G0 be the set of unattacked arguments in Args.

I For each i ∈ N, let Gi+1 ⊆ Args be the set of arguments that
Gi defends (by attacking all arguments attacking Gi ).

Then G = ∪i∈NGi is the grounded extension of 〈Args,Att〉.

{c(mary), in(mary)} is grounded, {in(mary)} is not
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Problem: An example (thanks to Guilherme Paulino-Passos)

A public park states that: No vehicles are allowed in the park.

The park council deliberates about the interpretation of this rule.
So far, it has decided the following:

1. When a young man complained that he was not allowed to use
a bicycle in the park, the council decided in his favour.

2. In a similar situation, but regarding a motorized bicycle, the
council rejected the complaint.

3. When an ambulance entered the park to rescue an elderly
person who was feeling sick, it was considered acceptable.

4. When an unspeci�ed vehicle entered the park to rescue a sick
person, this was also considered acceptable.

How will the park council decide on a new case?

(How can we use the past cases to reason about a new one?)
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Problem: An example (thanks to Guilherme Paulino-Passos)

I Past cases:

1. young man's bicycle
2. motorized bicycle
3. ambulance to rescue sick elderly person
4. unspeci�ed vehicle to rescue sick person

I New case:
I a pickup truck enters the park in order to rescue a sick person

How will the park council decide on this new case?

(How can we use the past cases to reason about a new one?)
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Problem

Given

I a dataset D of cases of the form (S , o)
(S features, o ∈ {+,−} outcome)

e.g. D ={({health_emergency ,motor , ambulance},+),
({bicycle,motor},−)}

I D is consistent i� there is no S such that (S ,+), (S ,−) ∈ D.
Suppose D is consistent.

I a default outcome d ∈ {+,−}
e.g. d =−

Determine/Explain

I the outcome of a focus case (with features) N

e.g. N ={health_emergency ,motor}
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Solution: AA-CBR (Example)

Given

I D = {({b},+), ({h},+), ({b,m},−), ({h,m, a},+)}
(note: D is consistent)

I default outcome: −
I N = {h,m}

〈Args,Att〉 is:

({},−)

({b},+) ({h},+)

({b,m},−) ({h,m, a},+)({h,m}, ?)

The grounded extension is G = {({h,m}, ?), ({h},+)}.
As ({},−) 6∈ G , the AA-CBR outcome of ({h,m}, ?) is +.
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General de�nition: AA Framework

Let Args = D ∪ {(N, ?)} ∪ {({}, d)}.
I for (X , oX ), (Y , oY ) ∈ D ∪ {({}, d)}, (X , oX )Att (Y , oY ) i�

1. oX 6= oY , and (di�erent outcomes)
2. Y ⊂ X , and (speci�city)
3. @(Z , oX ) with Y ⊂ Z ⊂ X (concision)

I for (Y , oY ) ∈ D, (N, ?)Att (Y , oY ) i�
Y 6⊂ N (irrelevance)

e.g. ({bicycle},+) attacks ({},−),
({health_emergency ,motor}, ?) attacks

({health_emergency ,motor , ambulance},+)
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General de�nition: Outcomes

We denote the opposite of an outcome o ∈ {+,−} as ō, in the
intuitive way:

I ō = −, if o = +

I ō = +, if o = −

We say that the outcome for the new case N is:

I d , if ({}, d) is in the grounded extension G ,

I d̄ , otherwise
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General de�nition: Properties

De�nition (Nearest cases)

For a case base CB and a new case N, a past case (X , oX ) ∈ CB is
nearest to N if X ⊆ N, and there is no (Y , oY ) ∈ CB such that
Y ⊆ N and X ⊂ Y .

Theorem
G contains all the nearest past cases to N.

Theorem (Unique past case)

If there is a unique nearest case (X , o) to N, then the AA outcome

of N is o.



18/34

Explanations in AA-CBR

I Return nearest cases
I typical way in CBR
I shows con�icting evidence in past cases

I Can we do better?
I Idea: use dispute trees
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Dispute trees - default outcome

({},−)

({b},+) ({h},+)

({b,m},−) ({h,m, a},+)({b,m}, ?)

P : ({},−)

O : ({b},+)

P : ({b,m},−)

O : ({h},+)

P : ({b,m}, ?)

grounded dispute tree
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Dispute trees - non-default outcome

({},−)

({b},+) ({h},+)

({b,m},−) ({h,m, a},+)({b,m, h}, ?)

P : ({},−)

O : ({b},+)

P : ({b,m},−)

O : ({h},+)

maximal dispute tree
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Learning AA frameworks: Beyond AA-CBR

I Tabular data (discrete)

I Unstructured data (sentiment analysis)
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Part II: Learning ABA Frameworks

1. Background (ABA frameworks and Logic Programming)

2. Problem

3. Solution

Bibliography

I Bondarenko, Dung, Kowalski, Toni: An Abstract,
Argumentation-Theoretic Approach to Default Reasoning. AIJ 1997

I Proietti, Toni: Learning Assumption-based Argumentation
Frameworks. IJCLR 2022
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Background: ABA Frameworks

An ABA framework is a tuple 〈L, R, A, 〉 where
I 〈L,R〉 is a deductive system, with L a language and R a set

of (inference) rules of the form s0 ← s1, . . . , sm
(m ≥ 0, si ∈ L, for 1 ≤ i ≤ m);

I A ⊆ L is a (non-empty) set of assumptions;

I is a total mapping from A into L, where a is the contrary

of a, for a ∈ A.

The ABA framework is �at if no assumptions are heads of rules.

Example (using schemata)

I L = {p(X ), q(X ), r(X ), a(X ), b(X )|X ∈ {1, 2}};
R = {p(X )← a(X ), q(X )← b(X ), r(1)← true};

I A = {a(X ), b(X )};
I a(X ) = q(X ), b(X ) = r(X ).
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Background: Logic programming

Flat ABA frameworks 〈L, R, A, 〉 where L is a set of atoms
amount to (normal) logic programs.

Example (from previous slide)

I L = {p(X ), q(X ), r(X ), a(X ), b(X )|X ∈ {1, 2}};
R = {p(X )← a(X ), q(X )← b(X ), r(1)← true};

I A = {a(X ), b(X )};
I a(X ) = q(X ), b(X ) = r(X ).

Example (as logic program)

p(X )← not q(X )
q(X )← not r(X )
r(1)←



24/34

Background: Logic programming

Flat ABA frameworks 〈L, R, A, 〉 where L is a set of atoms
amount to (normal) logic programs.

Example (from previous slide)

I L = {p(X ), q(X ), r(X ), a(X ), b(X )|X ∈ {1, 2}};
R = {p(X )← a(X ), q(X )← b(X ), r(1)← true};

I A = {a(X ), b(X )};
I a(X ) = q(X ), b(X ) = r(X ).

Example (as logic program)

p(X )← not q(X )
q(X )← not r(X )
r(1)←



25/34

Background: (�at) ABA/Logic programming semantics

I ABA:
I arguments are deductions of claims using rules and supported

by assumptions,
I attacks are directed at the assumptions in the support of

arguments;
I Abstract Argumentation-style extension-based semantics

Example (from earlier slide)

L = {. . .}; R = {q(X )← b(X ), r(1)← true};

A = {. . .}; a(X ) = q(X ), b(X ) = r(X ).

I Arguments: {a(X )} ` a(X ), {b(X )} ` q(X ), {} ` r(1),
etc

I {} ` r(1) attacks {b(1)} ` q(1),
{b(1)} ` q(1) attacks {a(1)} ` a(1),
etc
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Background: (�at) ABA/Logic programming semantics

Various notions of �acceptable� extensions (sets of arguments)

One-to-one correspondence between models of logic

programs and acceptable extensions in �at ABA

e.g. well-founded model ∼ grounded extension
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Problem: An example (Dimopoulos-Kakas 1995)
I Given

1) Background knowledge (ABA framework):

R = { bird(X )← penguin(X ),

penguin(X )← superpenguin(X ),

bird(a)←, bird(b)←,
penguin(c)←, penguin(d)←,
superpenguin(e)←, superpenguin(f )←}

2) Positive Examples: {�ies(a), �ies(b), �ies(e), �ies(f )}
3) Negative Examples: {�ies(c), �ies(d)}

I Determine an ABA framework �generalising� the examples

R′ = {�ies(X )← bird(X ), α1(X ),

c-α1(X )← penguin(X ), α2(X ),
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Problem: Formally

I 〈L, R, A, 〉 |= s indicates that s ∈ L is the claim of an
argument accepted in all or some (stable, grounded, . . . )
extensions of 〈L, R, A, 〉.

I An example e
is covered by 〈L, R, A, 〉 i� 〈L, R, A, 〉 |= e and
is not covered by 〈L, R, A, 〉 i� 〈L, R, A, 〉 6|= e.

I Given background knowledge 〈L, R, A, 〉, positive examples
E+ and negative examples E−(E+ ∩ E− = ∅),
the goal of ABA learning is to construct 〈L′, R′, A′, ′〉
with R ⊆ R′, A ⊆ A′ and ∀α ∈ A, α′ = α, such that:
I (Existence) 〈L′, R′, A′, ′〉 admits at least one extension

(under the chosen ABA semantics),
I (Completeness) ∀e ∈ E+, 〈L′, R′, A′, ′〉 |= e, and
I (Consistency) ∀e ∈ E−, 〈L′, R′, A′, ′〉 6|= e.
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Solution: Transformation rules for (�at) ABA frameworks

I Equality Removal. Replace a rule ρ1 : H ← eq1,Eqs,B in R,
by rule ρ2 : H ← Eqs,B. Thus, R′ = (R \ {ρ1}) ∪ {ρ2}.

I Folding. Given rules ρ1: H ← Eqs1,B1,B2 and
ρ2: K ← Eqs1,Eqs2,B1 in R, replace ρ1 by
ρ3: H ← Eqs2,K ,B2. Thus, R′ = (R \ {ρ1}) ∪ {ρ3}.

I Subsumption. Delete from R subsumed rules.

I Rote Learning. Given atom p(t), add ρ : p(X )← X = t to R.
Thus, R′=R∪ {ρ}.

I Assumption Introduction. Replace ρ1 : H ← Eqs,B in R by
ρ2 : H ← Eqs,B, α(X ) where variables in X are taken from
vars(H) ∪ vars(B) and α(X ) is a (possibly new) assumption
with contrary χ(X ). Thus,
I R′ = (R \ {ρ1}) ∪ {ρ2},
I A′ = A ∪ {α(X )},
I α(X )

′
= χ(X ), and β

′
= β for all β ∈ A.
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Solution: Requirements

I Let 〈L′, R′, A′, ′〉 be obtained by applying any of Folding,
Equality Removal and Subsumption to 〈L, R, A, 〉 to
modify rules with p in the head.
If 〈L, R, A, 〉 |= p(t) then 〈L′, R′, A′, ′〉 |= p(t).

I Let p(t1), p(t2) be atoms such that p(t1) 6= p(t2) and
〈L, R, A, 〉 |= p(t1) and 〈L, R, A, 〉 |= p(t2).
There exists 〈L′, R′, A′, ′〉 obtained from 〈L, R, A, 〉 by
applying Assumption Introduction to modify rules with p in

the head and then Rote Learning to add rules for the

contraries of the assumptions, such that

〈L′, R′, A′, ′〉 |= p(t1) and 〈L′, R′, A′, ′〉 6|= p(t2).
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An illustration

Given R = {step(1, 2)←, step(1, 3)←, step(2, 4)←, step(2, 5)←,
step(4, 6)←, step(5, 2)←, busy(3)←, busy(6)←};

E+ = {free(1), free(2), free(5)},
E− = {free(3), free(4), free(6)};

I Rote Learning introduces
free(X )← X = 1 (1)

I Folding with the (normalised) step(X ,Y )← X = 1,Y = 2 in
R gives

free(X )← Y = 2, step(X ,Y ) (2)

I By Equality Removal, we get
free(X )← step(X ,Y ) (3)
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An illustration (Continued)

Given R = {step(1, 2)←, step(1, 3)←, step(2, 4)←, step(2, 5)←,
step(4, 6)←, step(5, 2)←, busy(3)←, busy(6)←};

E+ = {free(1), free(2), free(5)},
E− = {free(3), free(4), free(6)};

I Rule (3) free(X )← step(X ,Y ) covers E+ as well as
free(4) ∈ E−.

Assumption Introduction gives α(X ,Y ) with
contrary c-α(X ,Y ) and replaces (3) by

free(X )← step(X ,Y ), α(X ,Y ) (4)

I Then, we add positive and negative examples for c-α(X ,Y ):
E+
1

= {c-α(4, 6)},
E−
1

= {c-α(1, 2), c-α(2, 4), c-α(2, 5), c-α(5, 2)}.
I . . .

c-α(X ,Y )← busy(Y ) (6)

The �nal learnt set of rules is R∪ {(4), (6)}.
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I Then, we add positive and negative examples for c-α(X ,Y ):
E+
1

= {c-α(4, 6)},
E−
1

= {c-α(1, 2), c-α(2, 4), c-α(2, 5), c-α(5, 2)}.

I . . .
c-α(X ,Y )← busy(Y ) (6)

The �nal learnt set of rules is R∪ {(4), (6)}.
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An illustration (Continued)
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Explanations: Dispute trees?

Mary (m): account holder traveling in friend's car (c); car
breaks down

R : cov(m, c)← ah(m), tr(m, c), pr(c), not ¬cov(m, c)

¬cov(m, c)← ¬reg(c,m), not cov ′(m, c)

cov ′(m, c)← in(m, c)

ah(m)← tr(m, c)← pr(c)←
¬reg(c,m)← in(m, c)←

L : Herbrand base of R plus (all) NAF literals

A : (all) NAF literals

not x = x for all x in the Herbrand base of R

P : {not ¬cov(m, c)} ` cov(m, c)

O : {not cov ′(m, c)} ` ¬cov(m, c)

P : {} ` cov ′(m, c)
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Future Work

I Learning AA frameworks: non-discrete data?

I Learning ABA frameworks:
I Formal guarantees
I Implementation and Experiments
I Comparison with other methods/systems to learn logic

programs/argumentation frameworks
I Learning other ABA instances (beyond logic programming)

I Does ABA learning generalise AA learning?

I Integration with sub-symbolic machine learning

I Explanation extraction and user evaluation

I Applications
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