Learning Argumentation Frameworks SUM 2022

Francesca Toni

18 October 2022

Outline

1. Context (Explainable AI, Argumentation)
2. Part I: Learning Abstract Argumentation Frameworks
3. Part II: Learning Assumption-Based Argumentation Frameworks
4. Future work

Context: eXplainable AI (XAI)

Map of Explainability Approaches

From "Principles and Practice of Explainable ML"; Belle\&Papantonis 2021

Context: eXplainable AI (XAI)

Map of Explainability Approaches

From "Principles and Practice of Explainable ML"; Belle\&Papantonis 2021

Context: Human-oriented XAI

- "Looking at how humans explain to each other can serve as a useful starting point for explanation in $\mathrm{Al}^{\prime \prime}$ [from Explanation in AI: Insights from the social sciences. Miller; AIJ 2019]

Context: Human-oriented XAI

- "Looking at how humans explain to each other can serve as a useful starting point for explanation in $\mathrm{Al}^{\prime \prime}$ [from Explanation in AI: Insights from the social sciences. Miller; AIJ 2019]
- "The majority of what might look like causal attributions turn out to look like argumentative claim-backings" [from Explaining in conversation: Towards an argument model. Antaki,Leudar. Journal of Social Psychology 1992]

Context: Argumentation

Figure: Argumentation for KR

Context: Argumentation

- Various argumentation frameworks, e.g. Abstract Argumentation (AA) and Assumption-Based Argumentation (ABA), with lots of applications

Figure: Argumentation for KR

Context: Argumentation

Figure: Argumentation for KR

- Various argumentation frameworks, e.g. Abstract Argumentation (AA) and Assumption-Based Argumentation (ABA), with lots of applications
- Can these argumentation frameworks be learnt?

Context: Argumentation

Figure: Argumentation for KR

- Various argumentation frameworks, e.g. Abstract Argumentation (AA) and Assumption-Based Argumentation (ABA), with lots of applications
- Can these argumentation frameworks be learnt?

In this talk I will present two approaches to learn AA and ABA frameworks from "examples"

Argumentation：An illustration

Am I eligible to claim for UK \＆European Breakdown \＆Recovery Assistance？

You need to think about whether the insurance meets your needs and whether you can claim when you need to．

You are covered fos

You are not covered for：

UK and European Breakdown Assistance for account hoider（s）in any private car that they ale
traveling in
\checkmark Anyone driving a private car registered to th account holder and which is being used with ins． her permission．Where the account is in joint names then up to 2 private cars can be covered
\checkmark Assistance provided at home and on the roadside with national recovery and onward travel
\checkmark No call out limit
\checkmark No excess payable
－The cost of replacement parts and associated labour to renair the wabicle
－Prinate cars not registered to the account hoider（s）unless． the account hoider（s）are in the vehicle at the time of
the breakdown
－Motorcydes，motorhomes，caravanettes，commercial vehicles （all types），vars，pick up truds and vehicles being used for hire and reward purposes（such as taxis）
－Vehicles that do not have a valid MOT or are not serviced or maintained in line with manufacturer guidelines
－Vehicles that are more than 7 metres in length， 2.3 metres wide， 3 metres high and weigh more than 3.5 tonnes when fully loaded

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in any private car they are travelling in
NOT COVERED FOR: private cars not registered to the account holder(s) unless in the vehicle at the time of the breakdown
Mary: account holder traveling in friend's car; car breaks down. Is Mary covered?

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in any private car they are travelling in
NOT COVERED FOR: private cars not registered to the account holder(s) unless in the vehicle at the time of the breakdown Mary: account holder traveling in friend's car; car breaks down. Is Mary covered?

- there is an argument c (mary) for Mary covered (as travelling in private car)

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in any private car they are travelling in
NOT COVERED FOR: private cars not registered to the account holder(s) unless in the vehicle at the time of the breakdown
Mary: account holder traveling in friend's car; car breaks down. Is Mary covered?

- there is an argument c (mary) for Mary covered (as travelling in private car)
- there is an objection (attack) against this argument, by an argument $n c$ (mary) for Mary not covered (as car not registered to Mary)

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in any private car they are travelling in
NOT COVERED FOR: private cars not registered to the account holder(s) unless in the vehicle at the time of the breakdown
Mary: account holder traveling in friend's car; car breaks down. Is Mary covered?

- there is an argument c (mary) for Mary covered (as travelling in private car)
- there is an objection (attack) against this argument, by an argument $n c$ (mary) for Mary not covered (as car not registered to Mary)
- there is an objection (attack) against this argument, by an argument in(mary) for Mary in car at time of breakdown

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in any private car they are travelling in
NOT COVERED FOR: private cars not registered to the account holder(s) unless in the vehicle at the time of the breakdown
Mary: account holder traveling in friend's car; car breaks down. Is Mary covered?

- there is an argument c (mary) for Mary covered (as travelling in private car)
- there is an objection (attack) against this argument, by an argument $n c$ (mary) for Mary not covered (as car not registered to Mary)
- there is an objection (attack) against this argument, by an argument in(mary) for Mary in car at time of breakdown
c (mary) is (dialectically) "good"/"strong'" and Mary is covered

Part I: Learning Abstract Argumentation Frameworks

1. Background (AA frameworks)
2. Problem
3. Solution

Bibliography

- Dung: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. AIJ 1995
- Cyras, Satoh, Toni: Abstract Argumentation for Case-Based Reasoning. KR2016
- Cocarascu, Stylianou, Cyras, Toni: Data-Empowered Argumentation for Dialectically Explainable Predictions. ECAI 2020

Background: AA frameworks

$\langle A r g s, A t t\rangle$ where

- Args is a set (the arguments)
- Att \subseteq Args \times Args is a binary relation over Args

Background: AA frameworks

$\langle A r g s, A t t\rangle$ where

- Args is a set (the arguments)
- Att \subseteq Args \times Args is a binary relation over Args $c($ mary $) \longleftarrow n c($ mary $) \longleftarrow i n($ mary $)$

Background: AA frameworks

$\langle A r g s, A t t\rangle$ where

- Args is a set (the arguments)
- Att \subseteq Args \times Args is a binary relation over Args

$$
c(\text { mary }) \longleftarrow n c(\text { mary }) \longleftarrow \operatorname{in}(\text { mary })
$$

Semantics for AA="Recipes" for determining (dialectically) "good" sets of arguments (extensions)

Background: AA frameworks

$\langle A r g s, A t t\rangle$ where

- Args is a set (the arguments)
- Att \subseteq Args \times Args is a binary relation over Args

$$
c(\text { mary }) \longleftarrow n c(\text { mary }) \longleftarrow i n(\text { mary })
$$

Semantics for AA="Recipes" for determining (dialectically) "good" sets of arguments (extensions)

Grounded extension

- Let G_{0} be the set of unattacked arguments in Args.
- For each $i \in \mathbb{N}$, let $G_{i+1} \subseteq$ Args be the set of arguments that G_{i} defends (by attacking all arguments attacking G_{i}).
Then $G=\cup_{i \in \mathbb{N}} G_{i}$ is the grounded extension of \langle Args, Att \rangle.

Background: AA frameworks

$\langle A r g s, A t t\rangle$ where

- Args is a set (the arguments)
- Att \subseteq Args \times Args is a binary relation over Args

$$
c(\text { mary }) \longleftarrow n c(\text { mary }) \longleftarrow i n(\text { mary })
$$

Semantics for AA="Recipes" for determining (dialectically) "good" sets of arguments (extensions)

Grounded extension

- Let G_{0} be the set of unattacked arguments in Args.
- For each $i \in \mathbb{N}$, let $G_{i+1} \subseteq$ Args be the set of arguments that G_{i} defends (by attacking all arguments attacking G_{i}).
Then $G=\cup_{i \in \mathbb{N}} G_{i}$ is the grounded extension of \langle Args, Att \rangle.

$$
\{c(\text { mary }), \text { in(mary })\} \text { is grounded, }\{i n(\text { mary })\} \text { is not }
$$

Problem: An example (thanks to Guilherme Paulino-Passos)

A public park states that: No vehicles are allowed in the park.

Problem: An example (thanks to Guilherme Paulino-Passos)

A public park states that: No vehicles are allowed in the park. The park council deliberates about the interpretation of this rule.

Problem: An example (thanks to Guilherme Paulino-Passos)

A public park states that: No vehicles are allowed in the park.
The park council deliberates about the interpretation of this rule. So far, it has decided the following:

1. When a young man complained that he was not allowed to use a bicycle in the park, the council decided in his favour.
2. In a similar situation, but regarding a motorized bicycle, the council rejected the complaint.
3. When an ambulance entered the park to rescue an elderly person who was feeling sick, it was considered acceptable.
4. When an unspecified vehicle entered the park to rescue a sick person, this was also considered acceptable.

Problem: An example (thanks to Guilherme Paulino-Passos)

A public park states that: No vehicles are allowed in the park.
The park council deliberates about the interpretation of this rule. So far, it has decided the following:

1. When a young man complained that he was not allowed to use a bicycle in the park, the council decided in his favour.
2. In a similar situation, but regarding a motorized bicycle, the council rejected the complaint.
3. When an ambulance entered the park to rescue an elderly person who was feeling sick, it was considered acceptable.
4. When an unspecified vehicle entered the park to rescue a sick person, this was also considered acceptable.

How will the park council decide on a new case?
(How can we use the past cases to reason about a new one?)

Problem: An example (thanks to Guilherme Paulino-Passos)

- Past cases:

1. young man's bicycle
2. motorized bicycle
3. ambulance to rescue sick elderly person
4. unspecified vehicle to rescue sick person

- New case:
- a pickup truck enters the park in order to rescue a sick person

How will the park council decide on this new case?
(How can we use the past cases to reason about a new one?)

Problem

Given

- a dataset D of cases of the form (S, o)
(S features, $o \in\{+,-\}$ outcome)
e.g. $D=\{(\{$ health_emergency, motor, ambulance $\},+)$, ($\{$ bicycle, motor $\},-$) \}
- D is consistent iff there is no S such that $(S,+),(S,-) \in D$. Suppose D is consistent.
- a default outcome $d \in\{+,-\}$
e.g. $d=-$

Problem

Given

- a dataset D of cases of the form (S, o)
(S features, $o \in\{+,-\}$ outcome)
e.g. $D=\{(\{$ health_emergency, motor, ambulance $\},+)$, ($\{$ bicycle, motor $\},-$) \}
- D is consistent iff there is no S such that $(S,+),(S,-) \in D$. Suppose D is consistent.
- a default outcome $d \in\{+,-\}$

$$
\text { e.g. } d=-
$$

Determine/Explain

- the outcome of a focus case (with features) N e.g. $N=\{$ health_emergency, motor $\}$

Solution: AA-CBR (Example)

Given

- $D=\{(\{b\},+),(\{h\},+),(\{b, m\},-),(\{h, m, a\},+)\}$ (note: D is consistent)
- default outcome: -
- $N=\{h, m\}$

Solution: AA-CBR (Example)

Given

- $D=\{(\{b\},+),(\{h\},+),(\{b, m\},-),(\{h, m, a\},+)\}$ (note: D is consistent)
- default outcome: -
- $N=\{h, m\}$
$\langle A r g s, A t t\rangle$ is:

Solution: AA-CBR (Example)

Given

- $D=\{(\{b\},+),(\{h\},+),(\{b, m\},-),(\{h, m, a\},+)\}$ (note: D is consistent)
- default outcome: -
- $N=\{h, m\}$
$\langle A r g s, A t t\rangle$ is:

Solution: AA-CBR (Example)

Given

- $D=\{(\{b\},+),(\{h\},+),(\{b, m\},-),(\{h, m, a\},+)\}$ (note: D is consistent)
- default outcome: -
- $N=\{h, m\}$
$\langle A r g s, A t t\rangle$ is:

The grounded extension is $G=\{(\{h, m\}, ?),(\{h\},+)\}$. As $(\},-) \notin G$, the AA-CBR outcome of $(\{h, m\}, ?)$ is + .

General definition: AA Framework

Let Args $=D \cup\{(N, ?)\} \cup\{(\{ \}, d)\}$.

- for $\left(X, o_{X}\right),\left(Y, o_{Y}\right) \in D \cup\{(\{ \}, d)\},\left(X, o_{X}\right) \operatorname{Att}\left(Y, o_{Y}\right)$ iff

1. $o_{X} \neq o_{Y}$, and
2. $Y \subset X$, and
3. $\nexists\left(Z, o_{X}\right)$ with $Y \subset Z \subset X$
(different outcomes) (specificity) (concision)

- for $\left(Y, o_{Y}\right) \in D,(N, ?) \operatorname{Att}\left(Y, o_{Y}\right)$ iff $Y \not \subset N$
(irrelevance)
e.g. ($\{$ bicycle $\},+$) attacks ($\},-$),
(\{health_emergency, motor\}, ?) attacks
($\{$ health_emergency, motor, ambulance $\},+$)

General definition: Outcomes

We denote the opposite of an outcome $o \in\{+,-\}$ as \bar{o}, in the intuitive way:

- $\bar{o}=-$, if $o=+$
- $\bar{o}=+$, if $o=-$

General definition: Outcomes

We denote the opposite of an outcome $o \in\{+,-\}$ as \bar{o}, in the intuitive way:

- $\bar{o}=-$, if $o=+$
- $\bar{o}=+$, if $o=-$

We say that the outcome for the new case N is:
$\checkmark d$, if $(\}, d)$ is in the grounded extension G,

- \bar{d}, \quad otherwise

General definition: Properties

Definition (Nearest cases)
For a case base $C B$ and a new case N, a past case $\left(X, o_{X}\right) \in C B$ is nearest to N if $X \subseteq N$, and there is no $\left(Y, o_{Y}\right) \in C B$ such that $Y \subseteq N$ and $X \subset Y$.

Theorem
G contains all the nearest past cases to N.
Theorem (Unique past case)
If there is a unique nearest case (X, o) to N, then the $A A$ outcome of N is o.

Explanations in AA-CBR

- Return nearest cases
- typical way in CBR
- shows conflicting evidence in past cases
- Can we do better?
- Idea: use dispute trees

Dispute trees - default outcome

Dispute trees - non-default outcome

Learning AA frameworks: Beyond AA-CBR

- Tabular data (discrete)
- Unstructured data (sentiment analysis)

Part II: Learning ABA Frameworks

1. Background (ABA frameworks and Logic Programming)
2. Problem
3. Solution

Bibliography

- Bondarenko, Dung, Kowalski, Toni: An Abstract, Argumentation-Theoretic Approach to Default Reasoning. AIJ 1997
- Proietti, Toni: Learning Assumption-based Argumentation Frameworks. IJCLR 2022

Background: ABA Frameworks

An $A B A$ framework is a tuple $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ where

- $\langle\mathcal{L}, \mathcal{R}\rangle$ is a deductive system, with \mathcal{L} a language and \mathcal{R} a set of (inference) rules of the form $s_{0} \leftarrow s_{1}, \ldots, s_{m}$ $\left(m \geq 0, s_{i} \in \mathcal{L}\right.$, for $\left.1 \leq i \leq m\right)$;
- $\mathcal{A} \subseteq \mathcal{L}$ is a (non-empty) set of assumptions;
- — is a total mapping from \mathcal{A} into \mathcal{L}, where \bar{a} is the contrary of a, for $a \in \mathcal{A}$.

Background: ABA Frameworks

An $A B A$ framework is a tuple $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ where

- $\langle\mathcal{L}, \mathcal{R}\rangle$ is a deductive system, with \mathcal{L} a language and \mathcal{R} a set of (inference) rules of the form $s_{0} \leftarrow s_{1}, \ldots, s_{m}$ $\left(m \geq 0, s_{i} \in \mathcal{L}\right.$, for $\left.1 \leq i \leq m\right)$;
- $\mathcal{A} \subseteq \mathcal{L}$ is a (non-empty) set of assumptions;
- - is a total mapping from \mathcal{A} into \mathcal{L}, where \bar{a} is the contrary of a, for $a \in \mathcal{A}$.
The ABA framework is flat if no assumptions are heads of rules.

Background: ABA Frameworks

An $A B A$ framework is a tuple $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ where

- $\langle\mathcal{L}, \mathcal{R}\rangle$ is a deductive system, with \mathcal{L} a language and \mathcal{R} a set of (inference) rules of the form $s_{0} \leftarrow s_{1}, \ldots, s_{m}$ $\left(m \geq 0, s_{i} \in \mathcal{L}\right.$, for $\left.1 \leq i \leq m\right)$;
- $\mathcal{A} \subseteq \mathcal{L}$ is a (non-empty) set of assumptions;
- - is a total mapping from \mathcal{A} into \mathcal{L}, where \bar{a} is the contrary of a, for $a \in \mathcal{A}$.
The ABA framework is flat if no assumptions are heads of rules.
Example (using schemata)
- $\mathcal{L}=\{p(X), q(X), r(X), a(X), b(X) \mid X \in\{1,2\}\} ;$

$$
\mathcal{R}=\{p(X) \leftarrow a(X), \quad q(X) \leftarrow b(X), \quad r(1) \leftarrow \text { true }\} ;
$$

- $\mathcal{A}=\{a(X), b(X)\}$;
- $\overline{a(X)}=q(X), \quad \overline{b(X)}=r(X)$.

Background: Logic programming

Flat ABA frameworks $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ where \mathcal{L} is a set of atoms amount to (normal) logic programs.

Background: Logic programming

Flat ABA frameworks $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ where \mathcal{L} is a set of atoms amount to (normal) logic programs.
Example (from previous slide)

- $\mathcal{L}=\{p(X), q(X), r(X), a(X), b(X) \mid X \in\{1,2\}\} ;$ $\mathcal{R}=\{p(X) \leftarrow a(X), \quad q(X) \leftarrow b(X), \quad r(1) \leftarrow$ true $\} ;$
- $\mathcal{A}=\{a(X), b(X)\}$;
- $\overline{a(X)}=q(X), \quad \overline{b(X)}=r(X)$.

Example (as logic program)
$p(X) \leftarrow \operatorname{not} q(X)$
$q(X) \leftarrow \operatorname{not} r(X)$
$r(1) \leftarrow$

Background: (flat) ABA/Logic programming semantics

- ABA:
- arguments are deductions of claims using rules and supported by assumptions,
- attacks are directed at the assumptions in the support of arguments;
- Abstract Argumentation-style extension-based semantics

Background: (flat) ABA/Logic programming semantics

- ABA:
- arguments are deductions of claims using rules and supported by assumptions,
- attacks are directed at the assumptions in the support of arguments;
- Abstract Argumentation-style extension-based semantics

Example (from earlier slide)
$\mathcal{L}=\{\ldots\} ; \quad \mathcal{R}=\{q(X) \leftarrow b(X), \quad r(1) \leftarrow$ true $\} ;$
$\mathcal{A}=\{\ldots\} ; \quad \overline{a(X)}=q(X), \quad \overline{b(X)}=r(X)$.

- Arguments: $\{a(X)\} \vdash a(X), \quad\{b(X)\} \vdash q(X), \quad\{ \} \vdash r(1)$, etc

Background: (flat) ABA/Logic programming semantics

$\rightarrow \mathrm{ABA}:$

- arguments are deductions of claims using rules and supported by assumptions,
- attacks are directed at the assumptions in the support of arguments;
- Abstract Argumentation-style extension-based semantics

Example (from earlier slide)
$\mathcal{L}=\{\ldots\} ; \quad \mathcal{R}=\{q(X) \leftarrow b(X), \quad r(1) \leftarrow$ true $\} ;$
$\mathcal{A}=\{\ldots\} ; \quad \overline{a(X)}=q(X), \quad \overline{b(X)}=r(X)$.

- Arguments: $\{a(X)\} \vdash a(X), \quad\{b(X)\} \vdash q(X), \quad\{ \} \vdash r(1)$, etc
- $\} \vdash r(1)$ attacks $\{b(1)\} \vdash q(1)$,
$\{b(1)\} \vdash q(1)$ attacks $\{a(1)\} \vdash a(1)$, etc

Background: (flat) ABA/Logic programming semantics

Various notions of "acceptable" extensions (sets of arguments)

Background: (flat) ABA/Logic programming semantics

Various notions of "acceptable" extensions (sets of arguments)

One-to-one correspondence between models of logic programs and acceptable extensions in flat ABA
e.g. well-founded model \sim grounded extension

Problem: An example (Dimopoulos-Kakas 1995)

- Given

1) Background knowledge (ABA framework):

$$
\begin{aligned}
\mathcal{R}=\{ & \operatorname{bird}(X) \leftarrow \text { penguin }(X) \\
& \text { penguin }(X) \leftarrow \operatorname{superpenguin}(X) \\
& \operatorname{bird}(a) \leftarrow, \operatorname{bird}(b) \leftarrow \\
& \text { penguin }(c) \leftarrow, \text { penguin }(d) \leftarrow, \\
& \text { superpenguin }(e) \leftarrow, \text { superpenguin }(f) \leftarrow\}
\end{aligned}
$$

Problem: An example (Dimopoulos-Kakas 1995)

- Given

1) Background knowledge (ABA framework):

$$
\begin{aligned}
\mathcal{R}=\{ & \operatorname{bird}(X) \leftarrow \text { penguin }(X), \\
& \text { penguin }(X) \leftarrow \operatorname{superpenguin}(X), \\
& \operatorname{bird}(a) \leftarrow, \operatorname{bird}(b) \leftarrow, \\
& \text { penguin }(c) \leftarrow, \text { penguin }(d) \leftarrow, \\
& \text { superpenguin }(e) \leftarrow, \text { superpenguin }(f) \leftarrow\}
\end{aligned}
$$

2) Positive Examples: $\{$ flies(a), flies(b), flies(e), flies $(f)\}$

Problem: An example (Dimopoulos-Kakas 1995)

- Given

1) Background knowledge (ABA framework):

$$
\begin{aligned}
\mathcal{R}=\{ & \operatorname{bird}(X) \leftarrow \text { penguin }(X), \\
& \text { penguin }(X) \leftarrow \operatorname{superpenguin}(X), \\
& \operatorname{bird}(a) \leftarrow, \text { bird }(b) \leftarrow, \\
& \text { penguin }(c) \leftarrow, \text { penguin }(d) \leftarrow, \\
& \text { superpenguin }(e) \leftarrow, \text { superpenguin }(f) \leftarrow\}
\end{aligned}
$$

2) Positive Examples: $\{$ flies(a), flies(b), flies(e), flies $(f)\}$
3) Negative Examples: $\{$ flies(c), flies(d) $\}$

Problem: An example (Dimopoulos-Kakas 1995)

- Given

1) Background knowledge (ABA framework):

$$
\begin{aligned}
\mathcal{R}=\{ & \operatorname{bird}(X) \leftarrow \text { penguin }(X), \\
& \text { penguin }(X) \leftarrow \operatorname{superpenguin}(X), \\
& \operatorname{bird}(a) \leftarrow, \operatorname{bird}(b) \leftarrow, \\
& \text { penguin }(c) \leftarrow, \text { penguin }(d) \leftarrow, \\
& \text { superpenguin }(e) \leftarrow, \text { superpenguin }(f) \leftarrow\}
\end{aligned}
$$

2) Positive Examples: $\{$ flies(a), flies(b), flies(e), flies $(f)\}$
3) Negative Examples: $\{$ flies (c), flies(d) $\}$

- Determine an ABA framework "generalising" the examples

Problem: An example (Dimopoulos-Kakas 1995)

- Given

1) Background knowledge (ABA framework):

$$
\begin{aligned}
\mathcal{R}=\{ & \operatorname{bird}(X) \leftarrow \text { penguin }(X), \\
& \text { penguin }(X) \leftarrow \operatorname{superpenguin}(X), \\
& \operatorname{bird}(a) \leftarrow, \operatorname{bird}(b) \leftarrow, \\
& \text { penguin }(c) \leftarrow, \text { penguin }(d) \leftarrow, \\
& \text { superpenguin }(e) \leftarrow, \text { superpenguin }(f) \leftarrow\}
\end{aligned}
$$

2) Positive Examples: $\{$ flies(a), flies(b), flies(e), flies $(f)\}$
3) Negative Examples: $\{$ flies(c), flies(d) $\}$

- Determine an ABA framework "generalising" the examples

$$
\begin{aligned}
\mathcal{R}^{\prime}=\{ & \left\{\text { flies }(X) \leftarrow \operatorname{bird}(X), \alpha_{1}(X),\right. \\
& c-\alpha_{1}(X) \leftarrow \operatorname{penguin}(X), \alpha_{2}(X) \\
& \left.c-\alpha_{2}(X) \leftarrow \operatorname{superpenguin}(X)\right\} \cup \mathcal{R} \\
\mathcal{A}^{\prime}=\{ & \left.\alpha_{1}(X), \alpha_{2}(X)\right\} \quad \text { with }{\overline{\alpha_{i}(X)}}^{\prime}=c-\alpha_{i}(X)
\end{aligned}
$$

Problem: Formally

- $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \vDash s$ indicates that $s \in \mathcal{L}$ is the claim of an argument accepted in all or some (stable, grounded, ...) extensions of $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$.

Problem: Formally

- $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \vDash s$ indicates that $s \in \mathcal{L}$ is the claim of an argument accepted in all or some (stable, grounded, ...) extensions of $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$.
- An example e
is covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \models e$ and is not covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \not \vDash e$.

Problem: Formally

- $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \equiv s$ indicates that $s \in \mathcal{L}$ is the claim of an argument accepted in all or some (stable, grounded, ...) extensions of $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$.
- An example e is covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \models e$ and is not covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \not \vDash e$.
- Given background knowledge $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$, positive examples \mathcal{E}^{+}and negative examples $\mathcal{E}^{-}\left(\mathcal{E}^{+} \cap \mathcal{E}^{-}=\emptyset\right)$, the goal of ABA learning is to construct $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ with $\mathcal{R} \subseteq \mathcal{R}^{\prime}, \mathcal{A} \subseteq \mathcal{A}^{\prime}$ and $\forall \alpha \in \mathcal{A}, \bar{\alpha}^{\prime}=\bar{\alpha}$, such that:

Problem: Formally

- $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \vDash s$ indicates that $s \in \mathcal{L}$ is the claim of an argument accepted in all or some (stable, grounded, ...) extensions of $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$.
- An example e is covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \models e$ and is not covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \not \vDash e$.
- Given background knowledge $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$, positive examples \mathcal{E}^{+}and negative examples $\mathcal{E}^{-}\left(\mathcal{E}^{+} \cap \mathcal{E}^{-}=\emptyset\right)$, the goal of ABA learning is to construct $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ with $\mathcal{R} \subseteq \mathcal{R}^{\prime}, \mathcal{A} \subseteq \mathcal{A}^{\prime}$ and $\forall \alpha \in \mathcal{A}, \bar{\alpha}^{\prime}=\bar{\alpha}$, such that:
- (Existence) $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ admits at least one extension (under the chosen ABA semantics),

Problem: Formally

- $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \equiv s$ indicates that $s \in \mathcal{L}$ is the claim of an argument accepted in all or some (stable, grounded, ...) extensions of $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$.
- An example e is covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \models e$ and is not covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \not \vDash e$.
- Given background knowledge $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$, positive examples \mathcal{E}^{+}and negative examples $\mathcal{E}^{-}\left(\mathcal{E}^{+} \cap \mathcal{E}^{-}=\emptyset\right)$, the goal of ABA learning is to construct $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ with $\mathcal{R} \subseteq \mathcal{R}^{\prime}, \mathcal{A} \subseteq \mathcal{A}^{\prime}$ and $\forall \alpha \in \mathcal{A}, \bar{\alpha}^{\prime}=\bar{\alpha}$, such that:
- (Existence) $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ admits at least one extension (under the chosen ABA semantics),
- (Completeness) $\forall e \in \mathcal{E}^{+},\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle \vDash e$, and

Problem: Formally

- $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \equiv s$ indicates that $s \in \mathcal{L}$ is the claim of an argument accepted in all or some (stable, grounded, ...) extensions of $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$.
- An example e is covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \models e$ and is not covered by $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ iff $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \not \vDash e$.
- Given background knowledge $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$, positive examples \mathcal{E}^{+}and negative examples $\mathcal{E}^{-}\left(\mathcal{E}^{+} \cap \mathcal{E}^{-}=\emptyset\right)$, the goal of ABA learning is to construct $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ with $\mathcal{R} \subseteq \mathcal{R}^{\prime}, \mathcal{A} \subseteq \mathcal{A}^{\prime}$ and $\forall \alpha \in \mathcal{A}, \bar{\alpha}^{\prime}=\bar{\alpha}$, such that:
- (Existence) $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ admits at least one extension (under the chosen ABA semantics),
- (Completeness) $\forall e \in \mathcal{E}^{+},\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle \vDash e$, and
- (Consistency) $\forall e \in \mathcal{E}^{-},\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle \not \vDash e$.

Solution: Transformation rules for (flat) ABA frameworks

Solution: Transformation rules for (flat) ABA frameworks

- Equality Removal. Replace a rule $\rho_{1}: H \leftarrow e q_{1}$, Eqs, B in \mathcal{R}, by rule $\rho_{2}: H \leftarrow E q s, B$. Thus, $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{2}\right\}$.

Solution: Transformation rules for (flat) ABA frameworks

- Equality Removal. Replace a rule $\rho_{1}: H \leftarrow e q_{1}$, Eqs, B in \mathcal{R}, by rule $\rho_{2}: H \leftarrow E q s, B$. Thus, $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{2}\right\}$.
- Folding. Given rules $\rho_{1}: H \leftarrow E q s_{1}, B_{1}, B_{2}$ and $\rho_{2}: K \leftarrow E q s_{1}, E q s_{2}, B_{1}$ in \mathcal{R}, replace ρ_{1} by $\rho_{3}: H \leftarrow E q s_{2}, K, B_{2}$. Thus, $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{3}\right\}$.

Solution: Transformation rules for (flat) ABA frameworks

- Equality Removal. Replace a rule $\rho_{1}: H \leftarrow e q_{1}$, Eqs, B in \mathcal{R}, by rule $\rho_{2}: H \leftarrow E q s, B$. Thus, $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{2}\right\}$.
- Folding. Given rules $\rho_{1}: H \leftarrow E q s_{1}, B_{1}, B_{2}$ and $\rho_{2}: K \leftarrow E q s_{1}, E q s_{2}, B_{1}$ in \mathcal{R}, replace ρ_{1} by $\rho_{3}: H \leftarrow E q s_{2}, K, B_{2}$. Thus, $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{3}\right\}$.
- Subsumption. Delete from \mathcal{R} subsumed rules.

Solution: Transformation rules for (flat) ABA frameworks

- Equality Removal. Replace a rule $\rho_{1}: H \leftarrow e q_{1}$, Eqs, B in \mathcal{R}, by rule $\rho_{2}: H \leftarrow E q s, B$. Thus, $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{2}\right\}$.
- Folding. Given rules $\rho_{1}: H \leftarrow E q s_{1}, B_{1}, B_{2}$ and $\rho_{2}: K \leftarrow E q s_{1}, E q s_{2}, B_{1}$ in \mathcal{R}, replace ρ_{1} by $\rho_{3}: H \leftarrow E q s_{2}, K, B_{2}$. Thus, $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{3}\right\}$.
- Subsumption. Delete from \mathcal{R} subsumed rules.
- Rote Learning. Given atom $p(t)$, add $\rho: p(X) \leftarrow X=t$ to \mathcal{R}. Thus, $\mathcal{R}^{\prime}=\mathcal{R} \cup\{\rho\}$.

Solution: Transformation rules for (flat) ABA frameworks

- Equality Removal. Replace a rule $\rho_{1}: H \leftarrow e q_{1}, E q s, B$ in \mathcal{R}, by rule $\rho_{2}: H \leftarrow E q s, B$. Thus, $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{2}\right\}$.
- Folding. Given rules $\rho_{1}: H \leftarrow E q s_{1}, B_{1}, B_{2}$ and $\rho_{2}: K \leftarrow E q s_{1}, E q s_{2}, B_{1}$ in \mathcal{R}, replace ρ_{1} by $\rho_{3}: H \leftarrow E q s_{2}, K, B_{2}$. Thus, $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{3}\right\}$.
- Subsumption. Delete from \mathcal{R} subsumed rules.
- Rote Learning. Given atom $p(t)$, add $\rho: p(X) \leftarrow X=t$ to \mathcal{R}. Thus, $\mathcal{R}^{\prime}=\mathcal{R} \cup\{\rho\}$.
- Assumption Introduction. Replace $\rho_{1}: H \leftarrow E q s, B$ in \mathcal{R} by $\rho_{2}: H \leftarrow E q s, B, \alpha(X)$ where variables in X are taken from $\operatorname{vars}(H) \cup \operatorname{vars}(B)$ and $\alpha(X)$ is a (possibly new) assumption with contrary $\chi(X)$. Thus,
- $\mathcal{R}^{\prime}=\left(\mathcal{R} \backslash\left\{\rho_{1}\right\}\right) \cup\left\{\rho_{2}\right\}$,
- $\mathcal{A}^{\prime}=\mathcal{A} \cup\{\alpha(X)\}$,
- $\overline{\alpha(X)}^{\prime}=\chi(X)$, and $\bar{\beta}^{\prime}=\bar{\beta}$ for all $\beta \in \mathcal{A}$.

Solution: Requirements

- Let $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ be obtained by applying any of Folding, Equality Removal and Subsumption to $\langle\mathcal{L}, \mathcal{R}, \mathcal{A}, 一\rangle$ to modify rules with p in the head. If $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \vDash p(t)$ then $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},-\prime\right\rangle \models p(t)$.

Solution: Requirements

- Let $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ be obtained by applying any of Folding, Equality Removal and Subsumption to $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ to modify rules with p in the head. If $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \vDash p(t)$ then $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},->\right\rangle \vDash p(t)$.
- Let $p\left(t_{1}\right), p\left(t_{2}\right)$ be atoms such that $p\left(t_{1}\right) \neq p\left(t_{2}\right)$ and $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \vDash p\left(t_{1}\right)$ and $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \models p\left(t_{2}\right)$.

Solution: Requirements

- Let $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ be obtained by applying any of Folding, Equality Removal and Subsumption to $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ to modify rules with p in the head. If $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \vDash p(t)$ then $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},->\right\rangle \vDash p(t)$.
- Let $p\left(t_{1}\right), p\left(t_{2}\right)$ be atoms such that $p\left(t_{1}\right) \neq p\left(t_{2}\right)$ and $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \vDash p\left(t_{1}\right)$ and $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle \vDash p\left(t_{2}\right)$. There exists $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle$ obtained from $\langle\mathcal{L}, \mathcal{R}, \mathcal{A},-\rangle$ by applying Assumption Introduction to modify rules with p in the head and then Rote Learning to add rules for the contraries of the assumptions, such that $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle \vDash p\left(t_{1}\right)$ and $\left\langle\mathcal{L}^{\prime}, \mathcal{R}^{\prime}, \mathcal{A}^{\prime},{ }^{\prime}\right\rangle \not \vDash p\left(t_{2}\right)$.

An illustration

```
Given \(\mathcal{R}=\{\operatorname{step}(1,2) \leftarrow, \operatorname{step}(1,3) \leftarrow, \operatorname{step}(2,4) \leftarrow, \operatorname{step}(2,5) \leftarrow\),
    \(\operatorname{step}(4,6) \leftarrow, \operatorname{step}(5,2) \leftarrow, \operatorname{busy}(3) \leftarrow, \operatorname{busy}(6) \leftarrow\}\);
    \(\mathcal{E}^{+}=\{\)free(1), free(2), free(5) \(\}\),
    \(\mathcal{E}^{-}=\{\)free(3), free(4), free(6) \(\} ;\)
```


An illustration

```
Given \(\mathcal{R}=\{\operatorname{step}(1,2) \leftarrow, \operatorname{step}(1,3) \leftarrow, \operatorname{step}(2,4) \leftarrow, \operatorname{step}(2,5) \leftarrow\),
    \(\operatorname{step}(4,6) \leftarrow, \operatorname{step}(5,2) \leftarrow, \operatorname{busy}(3) \leftarrow, \operatorname{busy}(6) \leftarrow\}\);
    \(\mathcal{E}^{+}=\{\)free(1), free(2), free(5) \(\}\),
    \(\mathcal{E}^{-}=\{\)free(3), free(4), free(6) \(\} ;\)
```

- Rote Learning introduces

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow X=1 \tag{1}
\end{equation*}
$$

An illustration

```
Given \(\mathcal{R}=\{\operatorname{step}(1,2) \leftarrow, \operatorname{step}(1,3) \leftarrow, \operatorname{step}(2,4) \leftarrow, \operatorname{step}(2,5) \leftarrow\),
    \(\operatorname{step}(4,6) \leftarrow, \operatorname{step}(5,2) \leftarrow, \operatorname{busy}(3) \leftarrow, \operatorname{busy}(6) \leftarrow\}\);
    \(\mathcal{E}^{+}=\{\)free(1), free(2), free(5) \(\}\),
    \(\mathcal{E}^{-}=\{\)free(3), free(4), free(6) \(\} ;\)
```

- Rote Learning introduces

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow X=1 \tag{1}
\end{equation*}
$$

- Folding with the (normalised) $\operatorname{step}(X, Y) \leftarrow X=1, Y=2$ in \mathcal{R} gives

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow Y=2, \operatorname{step}(X, Y) \tag{2}
\end{equation*}
$$

An illustration

```
Given \(\mathcal{R}=\{\operatorname{step}(1,2) \leftarrow, \operatorname{step}(1,3) \leftarrow, \operatorname{step}(2,4) \leftarrow, \operatorname{step}(2,5) \leftarrow\),
    \(\operatorname{step}(4,6) \leftarrow, \operatorname{step}(5,2) \leftarrow, \operatorname{busy}(3) \leftarrow, \operatorname{busy}(6) \leftarrow\}\);
    \(\mathcal{E}^{+}=\{\)free(1), free(2), free(5) \(\}\),
    \(\mathcal{E}^{-}=\{\)free(3), free(4), free(6) \(\} ;\)
```

- Rote Learning introduces

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow X=1 \tag{1}
\end{equation*}
$$

- Folding with the (normalised) $\operatorname{step}(X, Y) \leftarrow X=1, Y=2$ in \mathcal{R} gives

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow Y=2, \operatorname{step}(X, Y) \tag{2}
\end{equation*}
$$

- By Equality Removal, we get

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow \operatorname{step}(X, Y) \tag{3}
\end{equation*}
$$

An illustration (Continued)

$$
\begin{aligned}
\text { Given } \mathcal{R}= & \{\operatorname{step}(1,2) \leftarrow, \operatorname{step}(1,3) \leftarrow, \operatorname{step}(2,4) \leftarrow, \operatorname{step}(2,5) \leftarrow, \\
& \operatorname{step}(4,6) \leftarrow, \operatorname{step}(5,2) \leftarrow, \text { busy }(3) \leftarrow, \operatorname{busy}(6) \leftarrow\} ; \\
\mathcal{E}^{+}= & \{\text {free }(1), \text { free }(2), \text { free }(5)\}, \\
\mathcal{E}^{-}= & \{\text {free }(3), \text { free }(4), \text { free }(6)\} ;
\end{aligned}
$$

- Rule (3) free $(X) \leftarrow \operatorname{step}(X, Y)$ covers \mathcal{E}^{+}as well as free $(4) \in \mathcal{E}^{-}$.

An illustration (Continued)

$$
\begin{aligned}
\text { Given } \mathcal{R}= & \{\operatorname{step}(1,2) \leftarrow, \operatorname{step}(1,3) \leftarrow, \operatorname{step}(2,4) \leftarrow, \operatorname{step}(2,5) \leftarrow, \\
& \operatorname{step}(4,6) \leftarrow, \text { step }(5,2) \leftarrow, \text { busy }(3) \leftarrow, \operatorname{busy}(6) \leftarrow\} ; \\
\mathcal{E}^{+}= & \{\operatorname{free}(1), \text { free }(2), \text { free }(5)\}, \\
\mathcal{E}^{-}= & \{\text {free }(3), \text { free }(4), \text { free }(6)\} ;
\end{aligned}
$$

- Rule (3) free $(X) \leftarrow \operatorname{step}(X, Y)$ covers \mathcal{E}^{+}as well as free(4) $\in \mathcal{E}^{-}$. Assumption Introduction gives $\alpha(X, Y)$ with contrary $c-\alpha(X, Y)$ and replaces (3) by

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow \operatorname{step}(X, Y), \alpha(X, Y) \tag{4}
\end{equation*}
$$

An illustration (Continued)

Given $\mathcal{R}=\{\operatorname{step}(1,2) \leftarrow, \operatorname{step}(1,3) \leftarrow, \operatorname{step}(2,4) \leftarrow, \operatorname{step}(2,5) \leftarrow$,

$$
\begin{aligned}
&\operatorname{step}(4,6) \leftarrow, \operatorname{step}(5,2) \leftarrow, \operatorname{busy}(3) \leftarrow, \operatorname{busy}(6) \leftarrow\} ; \\
& \mathcal{E}^{+}=\{\text {free }(1), \text { free }(2), \text { free }(5)\}, \\
& \mathcal{E}^{-}=\{\text {free }(3), \text { free }(4), \text { free }(6)\} ;
\end{aligned}
$$

- Rule (3) free $(X) \leftarrow \operatorname{step}(X, Y)$ covers \mathcal{E}^{+}as well as free(4) $\in \mathcal{E}^{-}$. Assumption Introduction gives $\alpha(X, Y)$ with contrary $c-\alpha(X, Y)$ and replaces (3) by

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow \operatorname{step}(X, Y), \alpha(X, Y) \tag{4}
\end{equation*}
$$

- Then, we add positive and negative examples for $c-\alpha(X, Y)$:

$$
\begin{aligned}
& \mathcal{E}_{1}^{+}=\{c-\alpha(4,6)\} \\
& \mathcal{E}_{1}^{-}=\{c-\alpha(1,2), c-\alpha(2,4), c-\alpha(2,5), c-\alpha(5,2)\}
\end{aligned}
$$

An illustration (Continued)

Given $\mathcal{R}=\{\operatorname{step}(1,2) \leftarrow, \operatorname{step}(1,3) \leftarrow, \operatorname{step}(2,4) \leftarrow, \operatorname{step}(2,5) \leftarrow$,

$$
\begin{aligned}
&\operatorname{step}(4,6) \leftarrow, \operatorname{step}(5,2) \leftarrow, \operatorname{busy}(3) \leftarrow, \operatorname{busy}(6) \leftarrow\} ; \\
& \mathcal{E}^{+}=\{\operatorname{free}(1), \text { free }(2), \text { free }(5)\}, \\
& \mathcal{E}^{-}=\{\operatorname{free}(3), \text { free }(4), \text { free }(6)\} ;
\end{aligned}
$$

- Rule (3) free $(X) \leftarrow \operatorname{step}(X, Y)$ covers \mathcal{E}^{+}as well as free(4) $\in \mathcal{E}^{-}$. Assumption Introduction gives $\alpha(X, Y)$ with contrary $c-\alpha(X, Y)$ and replaces (3) by

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow \operatorname{step}(X, Y), \alpha(X, Y) \tag{4}
\end{equation*}
$$

- Then, we add positive and negative examples for $c-\alpha(X, Y)$:

$$
\begin{aligned}
& \mathcal{E}_{1}^{+}=\{c-\alpha(4,6)\} \\
& \mathcal{E}_{1}^{-}=\{c-\alpha(1,2), c-\alpha(2,4), c-\alpha(2,5), c-\alpha(5,2)\} .
\end{aligned}
$$

$$
\begin{equation*}
c-\alpha(X, Y) \leftarrow \operatorname{busy}(Y) \tag{6}
\end{equation*}
$$

An illustration (Continued)

Given $\mathcal{R}=\{\operatorname{step}(1,2) \leftarrow, \operatorname{step}(1,3) \leftarrow, \operatorname{step}(2,4) \leftarrow, \operatorname{step}(2,5) \leftarrow$,

$$
\begin{aligned}
&\operatorname{step}(4,6) \leftarrow, \operatorname{step}(5,2) \leftarrow, \operatorname{busy}(3) \leftarrow, \operatorname{busy}(6) \leftarrow\} ; \\
& \mathcal{E}^{+}=\{\operatorname{free}(1), \text { free }(2), \text { free }(5)\}, \\
& \mathcal{E}^{-}=\{\operatorname{free}(3), \text { free }(4), \text { free }(6)\} ;
\end{aligned}
$$

- Rule (3) free $(X) \leftarrow \operatorname{step}(X, Y)$ covers \mathcal{E}^{+}as well as free(4) $\in \mathcal{E}^{-}$. Assumption Introduction gives $\alpha(X, Y)$ with contrary $c-\alpha(X, Y)$ and replaces (3) by

$$
\begin{equation*}
\operatorname{free}(X) \leftarrow \operatorname{step}(X, Y), \alpha(X, Y) \tag{4}
\end{equation*}
$$

- Then, we add positive and negative examples for $c-\alpha(X, Y)$: $\mathcal{E}_{1}^{+}=\{c-\alpha(4,6)\}$, $\mathcal{E}_{1}^{-}=\{c-\alpha(1,2), c-\alpha(2,4), c-\alpha(2,5), c-\alpha(5,2)\}$.

$$
\begin{equation*}
c-\alpha(X, Y) \leftarrow \operatorname{busy}(Y) \tag{6}
\end{equation*}
$$

The final learnt set of rules is $\mathcal{R} \cup\{(4),(6)\}$.

Explanations: Dispute trees?

Mary (m): account holder traveling in friend's car (c); car breaks down

$$
\begin{aligned}
\mathcal{R}: \quad & \operatorname{cov}(m, c) \leftarrow \operatorname{ah}(m), \operatorname{tr}(m, c), \operatorname{pr}(c), \operatorname{not} \neg \operatorname{cov}(m, c) \\
& \neg \operatorname{cov}(m, c) \leftarrow \neg \operatorname{reg}(c, m), \operatorname{not} \operatorname{cov}^{\prime}(m, c) \\
& \operatorname{cov}^{\prime}(m, c) \leftarrow \operatorname{in}(m, c) \\
& a h(m) \leftarrow \quad \operatorname{tr}(m, c) \leftarrow \quad \operatorname{pr}(c) \leftarrow \\
& \neg \operatorname{reg}(c, m) \leftarrow \quad \operatorname{in}(m, c) \leftarrow
\end{aligned}
$$

$\mathcal{L}: \quad$ Herbrand base of \mathcal{R} plus (all) NAF literals
$\mathcal{A}: \quad$ (all) NAF literals
$\overline{\operatorname{not} x}=x$ for all x in the Herbrand base of \mathcal{R}

Explanations: Dispute trees?

Mary (m): account holder traveling in friend's car (c); car breaks down
$\mathcal{R}: \quad \operatorname{cov}(m, c) \leftarrow \operatorname{ah}(m), \operatorname{tr}(m, c), \operatorname{pr}(c), \operatorname{not} \neg \operatorname{cov}(m, c)$

$$
\begin{array}{llc}
& \neg \operatorname{cov}(m, c) \leftarrow \neg \operatorname{reg}(c, m), \text { not } \operatorname{cov}^{\prime}(m, c) & \mathrm{P}:\{\operatorname{not} \neg \operatorname{cov}(m, c)\} \vdash \operatorname{cov}(m, c) \\
& \operatorname{cov}(m, c) \leftarrow \operatorname{in}(m, c) & \mid \\
& a h(m) \leftarrow \quad \operatorname{tr}(m, c) \leftarrow \quad \operatorname{pr}(c) \leftarrow & \mathrm{O}:\left\{\operatorname{not} \operatorname{cov}^{\prime}(m, c)\right\} \vdash \neg \operatorname{cov}(m, c) \\
& \neg \operatorname{reg}(c, m) \leftarrow \quad \operatorname{in}(m, c) \leftarrow & \mid \\
\mathcal{L}: & \text { Herbrand base of } \mathcal{R} \text { plus (all) NAF literals } & \mathrm{P}:\{ \} \vdash \operatorname{cov}^{\prime}(m, c)
\end{array}
$$

\mathcal{A} : (all) NAF literals
$\overline{\text { not } x}=x$ for all x in the Herbrand base of \mathcal{R}

Future Work

- Learning AA frameworks: non-discrete data?

Future Work

- Learning AA frameworks: non-discrete data?
- Learning ABA frameworks:
- Formal guarantees
- Implementation and Experiments
- Comparison with other methods/systems to learn logic programs/argumentation frameworks
- Learning other ABA instances (beyond logic programming)

Future Work

- Learning AA frameworks: non-discrete data?
- Learning ABA frameworks:
- Formal guarantees
- Implementation and Experiments
- Comparison with other methods/systems to learn logic programs/argumentation frameworks
- Learning other ABA instances (beyond logic programming)
- Does ABA learning generalise AA learning?

Future Work

- Learning AA frameworks: non-discrete data?
- Learning ABA frameworks:
- Formal guarantees
- Implementation and Experiments
- Comparison with other methods/systems to learn logic programs/argumentation frameworks
- Learning other ABA instances (beyond logic programming)
- Does ABA learning generalise AA learning?
- Integration with sub-symbolic machine learning

Future Work

- Learning AA frameworks: non-discrete data?
- Learning ABA frameworks:
- Formal guarantees
- Implementation and Experiments
- Comparison with other methods/systems to learn logic programs/argumentation frameworks
- Learning other ABA instances (beyond logic programming)
- Does ABA learning generalise AA learning?
- Integration with sub-symbolic machine learning
- Explanation extraction and user evaluation
- Applications

