Learning Argumentation Frameworks
SUM 2022

Francesca Toni

Imperial College Qg
London CHAg

- @ Royal Academy
SV of Engineering

C

JPMorgan

18 October 2022

Outline

1. Context (Explainable Al, Argumentation)
2. Part I: Learning Abstract Argumentation Frameworks

3. Part Il: Learning Assumption-Based Argumentation
Frameworks

4. Future work

Context: eXplainable Al (XAl)

Map of Explainability Approaches

Model types

Logistic / Linear
/| regression

~[Generative
Additive Models

™ Bayesian Models

\ / Random Forest N

\ Opaque |/ [Support Vector |
Models |\ Machines

'\ Multayer Neural)/
Network

Explainability ~ Popular Techniques
Explainability Principles (examples)
Categories [
| Explanation by |~ leomar
/. simplification R
/ infuence
//__functions
/ /4 sensitiity
Feature relevance \//
explanation X~ (" Game theory
/ / \\ inspired SHAR
Interaction based
Rule-based
» Anchors
| Model-Agnostic | Local explanations
| < § ~ Linear LME
" N \, | approximation
\ | \ Counterfactual
v Countertactuals s
\ - Sensitidty
\ 3 | Visual L1 y «ce
" PostHoc explanations S a5
7\ Explainabiity | Dependency plots <
/ | 1 PDP
Rul
\ leamer
\ Explanation by |/ [Decision trees / iieee
\ /- simpication <\ prototypes
[Mosespeciic < ™ Distitation
\
\[Feature relevance | Feature
planation importance

From “Principles and Practice of Explainable ML”; Belle&Papantonis 2021

Context: eXplainable Al (XAl)

Map of Explainability Approaches

Explainabilty ~ Popular Techniques

Explainability Principles (examples)
Categories T
Expianationby |~ | leamer
Model types Simpitfcation | —_ =
o ~ Decision tree
Logistic / Linear | |
mresdn 1 Inflsence
i Argumentation /| functions.
i Frameworks v Sensitity
f Feature relevance {
i explanation [~ (" Game theory
/ / S e sHAP
A : \(
/ / Interaction based
/ f7
/ ~[Genermive |} | V4 Rule-based
Additive Models | | 1 v 1 leamer Qe
P | Model-Agnostic —— Local explanations <
i 2 ~J inear LME
BayesienModes ||\ | 9 N\ | spproximation
v N Counterfactual
\ v \\ Counterfactuals ity
\ | Random Forest |) N
| \ - sensitiity
\ e \ P\v T N p‘./m-i % 1 ICE
\ opaaue |/ pport Vector |\ Post explanations |~ &
Models | | Machines /| Explainabilty e~ |
y | 1 POP
\(Multidayor Newsl |/ | Rule-based
Network \ lo-bas.
\ A leamer
\ Explanation by Decision trees / |— Ll
\ /! simpifcation protolypes.
(" Modet Specite < Distillation
"\ Fosture wiovarce | Fealure
‘explanation importance

From “Principles and Practice of Explainable ML”; Belle&Papantonis 2021

Context: Human-oriented XAl

» “Looking at how humans explain to each other can serve as a
useful starting point for explanation in Al”
[from Explanation in Al: Insights from the social sciences.
Miller; AlJ 2019

Context: Human-oriented XAl

» “Looking at how humans explain to each other can serve as a
useful starting point for explanation in Al”
[from Explanation in Al: Insights from the social sciences.
Miller; AlJ 2019

» “The majority of what might look like causal attributions turn
out to look like argumentative claim-backings”
[from Explaining in conversation: Towards an argument model.
Antaki,Leudar. Journal of Social Psychology 1992

Context: Argumentation

Problem é Solution

Automated Reasoning

(Symbolic) = argumentation semantics/ (Automated)

Representation —system Reasoning output

= argumentation

Y

framework » r
>

s4

Figure: Argumentation for KR

Context: Argumentation

> Various argumentation

s

Problem Solution
frameworks, e.g. Abstract
(symbolic) Automated Reasoning i d) Argu mentat|0 n (AA) an d
: = argumentation semantics/ Automate: .
Representation ;systemt Reasoning output ASSU m ptIO n- Based
= argumentation P . .
framework P Argumentation (ABA), with

lots of applications

Figure: Argumentation for KR

Context: Argumentation

> Various argumentation

s

Problem Solution
frameworks, e.g. Abstract
(symbolic) Automated Reasoning i d) Argumentatlon (AA) and
: = argumentation semantics/ Automate: .
Representation ;systemt Reasoning output ASSU m ptIO n- Based
= argumentation P . .
Framework & Argumentation (ABA), with

lots of applications

» Can these argumentation

Figure: Argumentation for KR frameworks be learnt?

Context: Argumentation

s

> Various argumentation

Problem Solution
frameworks, e.g. Abstract
(symbolic) Automated Reasoning i d) Argumentatlon (AA) and
: = argumentation semantics/ Automate: .
Representation ;systemt Reasoning output ASSU m ptIO n- Based
= argumentation P . .
Framework & Argumentation (ABA), with

lots of applications

» Can these argumentation

Figure: Argumentation for KR frameworks be learnt?

In this talk | will present two approaches to learn AA and ABA
frameworks from “examples”

Argumentation: An illustration

Am | eligible to claim for UK & European Breakdown & Recovery Assistance?

You need to think about whether the insurance meets your needs and whether you can
when you need to

Car regrsiered
mmmmsmmm ~
her permission. Where the account & in joint

Motorcycles,
names then up o 2 private cars can be covered mmmmmmwmmmh
v mwamwmum hire and reward purposes (such as tads)
with national recovery and onward travel mmamm-wMummmu
+ No call out hmit | maintained in line with manufacturer quidelines
W No exress payable |« Vehicles that are more than 7 metres in length, 2.3 metres
wide, 3 metres high and weigh more than 3.5 tonnes when
fully loaded

| (z Nationwide

DA 7/34

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in
any private car they are travelling in

NOT COVERED FOR: private cars not registered to the account
holder(s) unless in the vehicle at the time of the breakdown

Mary: account holder traveling in friend’s car; car breaks
down. Is Mary covered?

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in
any private car they are travelling in

NOT COVERED FOR: private cars not registered to the account
holder(s) unless in the vehicle at the time of the breakdown

Mary: account holder traveling in friend’s car; car breaks
down. Is Mary covered?

» there is an argument c(mary) for Mary covered (as travelling
in private car)

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in
any private car they are travelling in

NOT COVERED FOR: private cars not registered to the account
holder(s) unless in the vehicle at the time of the breakdown

Mary: account holder traveling in friend’s car; car breaks
down. Is Mary covered?

» there is an argument c(mary) for Mary covered (as travelling
in private car)

> there is an objection (attack) against this argument, by an
argument nc(mary) for Mary not covered (as car not
registered to Mary)

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in
any private car they are travelling in

NOT COVERED FOR: private cars not registered to the account
holder(s) unless in the vehicle at the time of the breakdown

Mary: account holder traveling in friend’s car; car breaks
down. Is Mary covered?

» there is an argument c(mary) for Mary covered (as travelling
in private car)

> there is an objection (attack) against this argument, by an
argument nc(mary) for Mary not covered (as car not
registered to Mary)

> there is an objection (attack) against this argument, by an
argument in(mary) for Mary in car at time of breakdown

Argumentation: An illustration

COVERED FOR: UK/EU Breakdown Assistance for account holder(s) in
any private car they are travelling in

NOT COVERED FOR: private cars not registered to the account
holder(s) unless in the vehicle at the time of the breakdown

Mary: account holder traveling in friend’s car; car breaks
down. Is Mary covered?
» there is an argument c(mary) for Mary covered (as travelling
in private car)
> there is an objection (attack) against this argument, by an
argument nc(mary) for Mary not covered (as car not
registered to Mary)
> there is an objection (attack) against this argument, by an
argument in(mary) for Mary in car at time of breakdown

c(mary) is (dialectically) “good”/“strong” and Mary is covered

Part |: Learning Abstract Argumentation Frameworks

1. Background (AA frameworks)
2. Problem
3. Solution

Bibliography

» Dung: On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games.
AlJ 1995

» Cyras, Satoh, Toni: Abstract Argumentation for Case-Based
Reasoning. KR2016

» Cocarascu, Stylianou, Cyras, Toni: Data-Empowered Argumentation
for Dialectically Explainable Predictions. ECAI 2020

Background: AA frameworks
(Args, Att) where

» Args is a set (the arguments)
> Att C Args x Args is a binary relation over Args

Background: AA frameworks
(Args, Att) where

» Args is a set (the arguments)
> Att C Args x Args is a binary relation over Args
c(mary) «——— nc(mary) —— in(mary)

Background: AA frameworks
(Args, Att) where

» Args is a set (the arguments)
> Att C Args x Args is a binary relation over Args
c(mary) «——— nc(mary) —— in(mary)

Semantics for AA="Recipes” for determining (dialectically) “good”
sets of arguments (extensions)

Background: AA frameworks
(Args, Att) where

» Args is a set (the arguments)
> Att C Args x Args is a binary relation over Args
c(mary) «——— nc(mary) —— in(mary)

Semantics for AA="Recipes” for determining (dialectically) “good”
sets of arguments (extensions)
Grounded extension

» Let Gy be the set of unattacked arguments in Args.

» For each i € N, let G;j11 C Args be the set of arguments that
G; defends (by attacking all arguments attacking G;).

Then G = UjenG; is the grounded extension of (Args, Att).

Background: AA frameworks
(Args, Att) where

» Args is a set (the arguments)
> Att C Args x Args is a binary relation over Args
c(mary) «——— nc(mary) —— in(mary)

Semantics for AA="Recipes” for determining (dialectically) “good”
sets of arguments (extensions)
Grounded extension

» Let Gy be the set of unattacked arguments in Args.

» For each i € N, let G;j11 C Args be the set of arguments that
G; defends (by attacking all arguments attacking G;).

Then G = UjenG; is the grounded extension of (Args, Att).

{c(mary), in(mary)} is grounded, {in(mary)} is not

Problem: An example (thanks to Guilherme Paulino-Passos)

A public park states that: No vehicles are allowed in the park.

Problem: An example (thanks to Guilherme Paulino-Passos)

A public park states that: No vehicles are allowed in the park.

The park council deliberates about the interpretation of this rule.

Problem: An example (thanks to Guilherme Paulino-Passos)

A public park states that: No vehicles are allowed in the park.
The park council deliberates about the interpretation of this rule.

So far, it has decided the following:

1. When a young man complained that he was not allowed to use
a bicycle in the park, the council decided in his favour.

2. In a similar situation, but regarding a motorized bicycle, the
council rejected the complaint.

3. When an ambulance entered the park to rescue an elderly
person who was feeling sick, it was considered acceptable.

4. When an unspecified vehicle entered the park to rescue a sick
person, this was also considered acceptable.

Problem: An example (thanks to Guilherme Paulino-Passos)

A public park states that: No vehicles are allowed in the park.
The park council deliberates about the interpretation of this rule.

So far, it has decided the following:

1. When a young man complained that he was not allowed to use
a bicycle in the park, the council decided in his favour.

2. In a similar situation, but regarding a motorized bicycle, the
council rejected the complaint.

3. When an ambulance entered the park to rescue an elderly
person who was feeling sick, it was considered acceptable.

4. When an unspecified vehicle entered the park to rescue a sick
person, this was also considered acceptable.

How will the park council decide on a new case?
(How can we use the past cases to reason about a new one?)

Problem: An example (thanks to Guilherme Paulino-Passos)

> Past cases:
1. young man'’s bicycle
2. motorized bicycle
3. ambulance to rescue sick elderly person
4. unspecified vehicle to rescue sick person
> New case:
» a pickup truck enters the park in order to rescue a sick person

How will the park council decide on this new case?
(How can we use the past cases to reason about a new one?)

Problem

Given
» a dataset D of cases of the form (S, 0)
(S features, o € {+,—} outcome)
e.g. D ={({health_emergency, motor, ambulance}, +),
({bicycle, motor}, —)}
» D is consistent iff there is no S such that (S,+), (S,—) € D.
Suppose D is consistent.
» a default outcome d € {+,—}

eg d=-—

Problem

Given
» a dataset D of cases of the form (S, 0)
(S features, o € {+,—} outcome)

e.g. D ={({health_emergency, motor, ambulance}, +),
({bicycle, motor}, —)}

» D is consistent iff there is no S such that (S,+), (S,—) € D.
Suppose D is consistent.

» a default outcome d € {+,—}
eg d=-—
Determine/Explain
» the outcome of a focus case (with features) N
e.g. N ={health emergency, motor}

Solution: AA-CBR (Example)

Given

> D= {({b}7 +)7 ({h}7 +)7 ({b7 m}v _)7 ({h7 m, a}7 +)}

(note: D is consistent)
» default outcome: —
» N ={h m}

Solution: AA-CBR (Example)

Given

> D= {({b}7 +)7 ({h}7 +)7 ({b7 m}v _)7 ({h7 m, a}7 +)}

(note: D is consistent)
» default outcome: —
» N ={h m}

(Args, Att) is:

Solution: AA-CBR (Example)

Given

> D= {({b}7 +)7 ({h}7 +)7 ({b7 m}v _)7 ({h7 m, a}7 +)}

(note: D is consistent)
» default outcome: —
» N ={h m}

(Args, Att) is: @ @

Solution: AA-CBR (Example)

Given

> D= {({b}7+)7({h}7+)7({b7 m}v_)7({h7 m, a}7+)}

(note: D is consistent)
» default outcome: —
» N ={h m}

(Args, Att) is: @ @

The grounded extension is G = {({h, m},?), ({h},+)}.
As ({},—) ¢ G, the AA-CBR outcome of ({h, m},?) is +.

General definition: AA Framework

Let Args = DU{(N,?)} U{({},d)}.
» for (X,0x),(Y,oy) e DU{({},d)}. (X,o0x)Att(Y,oy) iff

1. ox # oy, and (different outcomes)
2. YCX, and (specificity)
3. (Z,ox) with Y c Z C X (concision)
» for (Y,oy) € D, (N,?)Att (Y, oy) iff
YZN (irrelevance)

e.g. ({bicycle},+) attacks ({},—),
({health _emergency, motor},?) attacks
({ health__emergency, motor, ambulance}, +)

General definition: Outcomes

We denote the opposite of an outcome o € {+,—} as &, in the
intuitive way:

General definition: Outcomes

We denote the opposite of an outcome o € {+,—} as &, in the

intuitive way:
> o6=—,ifo=+
» 6=+,ifo=—

We say that the outcome for the new case N is:

> d, if ({},d) is in the grounded extension G,

> d, otherwise

General definition: Properties

Definition (Nearest cases)

For a case base CB and a new case N, a past case (X,0x) € CB is
nearest to NV if X C N, and there is no (Y, o0y) € CB such that
YCNand X CY.

Theorem
G contains all the nearest past cases to N.

Theorem (Unique past case)

If there is a unique nearest case (X, 0) to N, then the AA outcome
of N is o.

Explanations in AA-CBR

> Return nearest cases

> typical way in CBR

» shows conflicting evidence in past cases
» Can we do better?

» ldea: use dispute trees

Dispute trees - default outcome

- P:({},-)
({.-) S

@+ @) 0:({b),4)0: ([}, +)
P:({b,m},—P:({b,m},7?)
@ @ @ grounded dispute tree

Dispute trees - non-default outcome

P:({},-)
[T

@+ @) 0= (b},)0 ({h),+)
P:({b,m},—)
@ maximal dispute tree

Learning AA frameworks: Beyond AA-CBR

N/

E ~ characterisation /D\ a;gl;mentation
extractor ebate miner
/ ~ de /'

ldpy l

P)

) predictor ~ (A‘r‘gs,’v))

dispute between
proponentand explainer
opponent

» Tabular data (discrete)

» Unstructured data (sentiment analysis)

Part Il: Learning ABA Frameworks

1. Background (ABA frameworks and Logic Programming)
2. Problem
3. Solution

Bibliography

» Bondarenko, Dung, Kowalski, Toni: An Abstract,
Argumentation-Theoretic Approach to Default Reasoning. AlJ 1997

» Proietti, Toni: Learning Assumption-based Argumentation
Frameworks. [JCLR 2022

Background: ABA Frameworks

An ABA framework is a tuple (L, R, A, —) where
> (L, R) is a deductive system, with £ a language and R a set
of (inference) rules of the form sy <— s1,...,5m
(m>0,s; € L, for 1 < i< m);
» A C Lis a (non-empty) set of assumptions;
> ~ is a total mapping from A into L, where 3 is the contrary
of a, for a e A.

Background: ABA Frameworks

An ABA framework is a tuple (L, R, A, —) where

> (L, R) is a deductive system, with £ a language and R a set
of (inference) rules of the form sy <— s1,...,5m
(m>0,s; € L, for 1 < i< m);

» A C Lis a (non-empty) set of assumptions;

> ~ is a total mapping from A into L, where 3 is the contrary
of a, for a e A.

The ABA framework is flat if no assumptions are heads of rules.

Background: ABA Frameworks

An ABA framework is a tuple (L, R, A, —) where

> (L, R) is a deductive system, with £ a language and R a set
of (inference) rules of the form sy <— s1,...,5m
(m>0,s; € L, for 1 < i< m);

» A C Lis a (non-empty) set of assumptions;

> ~ is a total mapping from A into L, where 3 is the contrary
of a, for a e A.

The ABA framework is flat if no assumptions are heads of rules.
Example (using schemata)
> L ={p(X),q(X), r(X),a(X),b(X)|X € {1,2}};
R ={p(X) < a(X), q(X) <« b(X), r(1)<« true};
A ={a(X), b(X)};
a(X) = q(X), b(X) = r(X).

>
>

Background: Logic programming

Flat ABA frameworks (£, R, A, —) where L is a set of atoms
amount to (normal) logic programs.

Background: Logic programming

Flat ABA frameworks (£, R, A, —) where L is a set of atoms
amount to (normal) logic programs.

Example (from previous slide)
> £ = {p(X),q(X), r(X),a(X), (X)X € {1,2}};
R ={p(X) < a(X), q(X) <« b(X), r(1) <« true};
> A={a(X),b(X)};

> a(X) =q(X), b(X)=r(X).

Example (as logic program)
p(X) + not g(X)

q(X) < not r(X)

r(1) <

Background: (flat) ABA/Logic programming semantics

> ABA:
» arguments are deductions of claims using rules and supported
by assumptions,
» attacks are directed at the assumptions in the support of
arguments;
» Abstract Argumentation-style extension-based semantics

Background: (flat) ABA/Logic programming semantics

> ABA:
» arguments are deductions of claims using rules and supported
by assumptions,
» attacks are directed at the assumptions in the support of
arguments;
» Abstract Argumentation-style extension-based semantics

Example (from earlier slide)
L={.}; R={q(X)«+ b(X), r(1)<« true};
A={.} aX)=q(X), bX)=r(X).

> Arguments: {a(X)} F a(X), {b(X)}F q(X), {}F r(1),
etc

Background: (flat) ABA/Logic programming semantics

> ABA:
» arguments are deductions of claims using rules and supported
by assumptions,
» attacks are directed at the assumptions in the support of
arguments;
» Abstract Argumentation-style extension-based semantics

Example (from earlier slide)
L={..}; R={q(X)<+ b(X), r(1)<« true};
A={.}3 aX)=q(X), bX)=r(X).
» Arguments: {a(X)} F a(X), {b(X)}F q(X), {}Fr(1),
etc
» {} F r(1) attacks {b(1)} F q(1),
{b(1)} F q(1) attacks {a(1)} I a(1),

etc

Background: (flat) ABA/Logic programming semantics

Various notions of “acceptable” extensions (sets of arguments)

Background: (flat) ABA/Logic programming semantics

Various notions of “acceptable” extensions (sets of arguments)

One-to-one correspondence between models of logic
programs and acceptable extensions in flat ABA
e.g. well-founded model ~ grounded extension

Problem: An example (Dimopoulos-Kakas 1995)
> Given
1) Background knowledge (ABA framework):
R ={ bird(X) < penguin(X),

penguin(X) < superpenguin(X),
bird(a) <, bird(b) <+,
penguin(c) <, penguin(d) <+,
superpenguin(e) <, superpenguin(f) +}

Problem: An example (Dimopoulos-Kakas 1995)
> Given
1) Background knowledge (ABA framework):
R ={ bird(X) < penguin(X),

penguin(X) < superpenguin(X),
bird(a) <, bird(b) <+,
penguin(c) <, penguin(d) <+,
superpenguin(e) <, superpenguin(f) +}

2) Positive Examples: {flies(a), flies(b), flies(e), flies(f)}

Problem: An example (Dimopoulos-Kakas 1995)
> Given
1) Background knowledge (ABA framework):
R ={ bird(X) < penguin(X),

penguin(X) < superpenguin(X),
bird(a) <, bird(b) <+,
penguin(c) <, penguin(d) <+,
superpenguin(e) <, superpenguin(f) +}

2) Positive Examples: {flies(a), flies(b), flies(e), flies(f)}
3) Negative Examples: {flies(c), flies(d)}

Problem: An example (Dimopoulos-Kakas 1995)
> Given
1) Background knowledge (ABA framework):
R ={ bird(X) < penguin(X),
penguin(X) < superpenguin(X),
bird(a) <, bird(b) <+,
penguin(c) <, penguin(d) <+,
superpenguin(e) <, superpenguin(f) +}
2) Positive Examples: {flies(a), flies(b), flies(e), flies(f)}
3) Negative Examples: {flies(c), flies(d)}
» Determine an ABA framework “generalising” the examples

Problem: An example (Dimopoulos-Kakas 1995)
> Given
1) Background knowledge (ABA framework):
R ={ bird(X) < penguin(X),
penguin(X) < superpenguin(X),
bird(a) <, bird(b) <+,
penguin(c) <, penguin(d) <+,
superpenguin(e) <, superpenguin(f) +}
2) Positive Examples: {flies(a), flies(b), flies(e), flies(f)}
3) Negative Examples: {flies(c), flies(d)}
» Determine an ABA framework “generalising” the examples
R' = {flies(X) «+ bird(X), a1(X),
c-a1(X) < penguin(X), az(X),
c-ap(X) « superpenguin(X)} UR
A = {o1(X), a2(X)} with a;(X) = c-a;(X)

Problem: Formally

» (L, R, A,) E s indicates that s € L is the claim of an
argument accepted in all or some (stable, grounded, .. .)
extensions of (£, R, A, 7).

Problem: Formally

» (L, R, A,) E s indicates that s € L is the claim of an
argument accepted in all or some (stable, grounded, .. .)
extensions of (£, R, A, 7).

> An example e
is covered by (L, R, A,) iff (E, R, ,) eand
is not covered by (L, R, A, —) FEe

=
ﬁ
}

Problem: Formally

» (L, R, A,) E s indicates that s € L is the claim of an
argument accepted in all or some (stable, grounded, .. .)
extensions of (£, R, A, 7).

> An example e
is covered by (L, R, A, 7) iff (L, R, A, > = e and
is not covered by (L, R, A, 7) iff (L, R, A,) [~ e.

» Given background knowledge (£, R, A, > positive examples
ET and negative examples £~ (£t NE™ = (),
the goal of ABA learning is to construct (L', R/, A’, —)
with R C R/, AC A" and Va € A, & = @, such that:

Problem: Formally

» (L, R, A,) E s indicates that s € L is the claim of an
argument accepted in all or some (stable, grounded, .. .)
extensions of (£, R, A, 7).

> An example e
is covered by (L, R, A, 7) iff (L, R, A, > = e and
is not covered by (L, R, A, 7) iff (L, R, A,) [~ e.

» Given background knowledge (£, R, A, ~), positive examples
ET and negative examples £~ (£t NE™ = (),
the goal of ABA learning is to construct (L', R/, A’, —)
with R C R/, AC A" and Va € A, & = @, such that:
> (Existence) (L', R', A’, ') admits at least one extension
(under the chosen ABA semantics),

Problem: Formally

» (L, R, A,) E s indicates that s € L is the claim of an
argument accepted in all or some (stable, grounded, .. .)
extensions of (£, R, A, 7).

> An example e
is covered by (L, R, A, 7) iff (L, R, A, > = e and
is not covered by (L, R, A, 7) iff (L, R, A,) [~ e.

» Given background knowledge (£, R, A, ~), positive examples
ET and negative examples £~ (£t NE™ = (),
the goal of ABA learning is to construct (L', R/, A’, —)
with R C R/, AC A" and Va € A, & = @, such that:
> (Existence) (L', R', A’, ') admits at least one extension

(under the chosen ABA semantics),
» (Completeness) Ve € £, (L', R, A', ') = e, and

Problem: Formally

» (L, R, A,) E s indicates that s € L is the claim of an
argument accepted in all or some (stable, grounded, .. .)
extensions of (£, R, A, 7).

> An example e
is covered by (L, R, A, 7) iff (L, R, A, > = e and
is not covered by (L, R, A, 7) iff (L, R, A,) [~ e.

» Given background knowledge (£, R, A, ~), positive examples
ET and negative examples £~ (£t NE™ = (),
the goal of ABA learning is to construct (L', R/, A’, —)
with R C R/, AC A" and Va € A, & = @, such that:
> (Existence) (L', R', A’, ') admits at least one extension
(under the chosen ABA semantics),
» (Completeness) Ve € £, (L', R, A', ') = e, and
(Consistency) Ye € £=, (L', R', A', ') ~e.

Solution: Transformation rules for (flat) ABA frameworks

Solution: Transformation rules for (flat) ABA frameworks

» FEquality Removal. Replace a rule p1 : H < eqi1, Eqs, B in R,
by rule po : H < Egs,B. Thus, R' = (R \ {p1}) U {p2}.

Solution: Transformation rules for (flat) ABA frameworks

» FEquality Removal. Replace a rule p1 : H < eqi1, Eqs, B in R,
by rule po : H < Egs,B. Thus, R' = (R \ {p1}) U {p2}.

» Folding. Given rules p1: H < Egs;, B1, B> and
p2: K < Egsi, Eqsp, By in R, replace p; by
p3: H <+ Egsy, K, By. Thus, R = (R\ {pl}) U {p3}.

Solution: Transformation rules for (flat) ABA frameworks

» FEquality Removal. Replace a rule p1 : H < eqi1, Eqs, B in R,
by rule po : H < Egs,B. Thus, R' = (R \ {p1}) U {p2}.

» Folding. Given rules p1: H < Egs;, B1, B> and
p2: K < Egsi, Eqsp, By in R, replace p; by
p3: H <+ Egsy, K, By. Thus, R' = (R \ {p1}) U {p3}.

» Subsumption. Delete from R subsumed rules.

Solution: Transformation rules for (flat) ABA frameworks

>

>

Equality Removal. Replace a rule p1 : H < eq1, Egs, B in R,
by rule po : H < Egs,B. Thus, R' = (R \ {p1}) U {p2}.
Folding. Given rules p1: H < Egs1, By, B> and

p2: K < Egsi, Eqsp, By in R, replace p; by

p3: H <+ Egsy, K, By. Thus, R' = (R \ {p1}) U {p3}.
Subsumption. Delete from R subsumed rules.

Rote Learning. Given atom p(t), add p: p(X) + X =t to R.
Thus, R' =R U {p}.

Solution: Transformation rules for (flat) ABA frameworks

>

>

Equality Removal. Replace a rule p1 : H < eq1, Egs, B in R,
by rule po : H < Egs,B. Thus, R' = (R \ {p1}) U {p2}.

Folding. Given rules p1: H < Egs1, By, B> and

p2: K < Egsi, Eqsp, By in R, replace p; by

p3: H <+ Egsy, K, By. Thus, R' = (R \ {p1}) U {p3}.
Subsumption. Delete from R subsumed rules.

Rote Learning. Given atom p(t), add p: p(X) + X =t to R.
Thus, R' =R U {p}.
Assumption Introduction. Replace p; : H < Egs, B in R by
p2 : H + Egs, B, a(X) where variables in X are taken from
vars(H) U vars(B) and «(X) is a (possibly new) assumption
with contrary x(X). Thus,

> R = (R\{p1}) U{pa},

> A= AU {a(X)},

> o(X) = x(X), and B =5 for all 8 € A.

Solution: Requirements

> Let (L', R/, A', —) be obtained by applying any of Folding,
Equality Removal and Subsumption to (£, R, A,) to
modify rules with p in the head.
If(L, R, A,) | p(t) then (L', R, A",) E p(t).

Solution: Requirements

> Let (L', R/, A', —) be obtained by applying any of Folding,
Equality Removal and Subsumption to (£, R, A,) to
modify rules with p in the head.
If(L, R, A,) | p(t) then (L', R, A",) E p(t).

» Let p(t1), p(t2) be atoms such that p(t1) # p(t2) and
<£7 R, -’47 7)): p(tl) and <£7 R, A> 7>): p(t2)'

Solution: Requirements

> Let (L', R/, A', —) be obtained by applying any of Folding,
Equality Removal and Subsumption to (£, R, A,) to
modify rules with p in the head.
If(L, R, A,) | p(t) then (L', R, A",) E p(t).

» Let p(t1), p(t2) be atoms such that p(t1) # p(t2) and
<£7 R, -’47 7)): p(tl) and <£7 R, -A> 7>): p(t2)'
There exists (L', R, A, —') obtained from (L, R, A,) by
applying Assumption Introduction to modify rules with p in
the head and then Rote Learning to add rules for the
contraries of the assumptions, such that

(LR, A, V= p(t1) and (L', R/, A,) = p(ta).

An illustration

Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5) <,
step(4,6) <, step(5,2) <, busy(3) <, busy(6) +};

ET = {free(1), free(2), free(5)},

E~ = {free(3), free(4), free(6)};

An illustration

Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5) <,
step(4,6) <, step(5,2) <, busy(3) <, busy(6) +};

ET = {free(1), free(2), free(5)},

E~ = {free(3), free(4), free(6)};

» Rote Learning introduces
free(X) + X =1 (1)

An illustration

Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5)
step(4,6) <, step(5,2) <, busy(3) <, busy(6) +};

5* = {free(1), free(2), free(5)},

= {free(3), free(4), free(6)};

A

» Rote Learning introduces

free(X) + X =1 (1)
» Folding with the (normalised) step(X,Y) <+ X =1,Y =21in
R gives

free(X) < Y = 2,step(X, Y) (2)

An illustration

Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5)
step(4,6) <, step(5,2) <, busy(3) <, busy(6) +};

5* = {free(1), free(2), free(5)},

= {free(3), free(4), free(6)};

A

» Rote Learning introduces

free(X) + X =1 (1)
» Folding with the (normalised) step(X,Y) <+ X =1,Y =21in
R gives
free(X) < Y = 2,step(X, Y) (2)

» By Equality Removal, we get
free(X) < step(X,Y) (3)

An illustration (Continued)

Given R = {step(1,2) <, step(1,3) <, step(2,4) «+, step(2,5) «

step(4,6) <, step(5,2) <, busy(3) <, busy(6) < };
S+ = {free(1), free(2), free(5)},
= {free(3), free(4), free(6)};

» Rule (3) free(X) + step(X, Y) covers ET as well as
free(4) € €.

An illustration (Continued)

Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5) <+,
step(4,6) <, step(5,2) <, busy(3) <, busy(6) +};

S+ = {free(1), free(2), free(5)},

= {free(3), free(4), free(6)};

» Rule (3) free(X) + step(X, Y) covers ET as well as
free(4) € £~. Assumption Introduction gives a(X, Y') with
contrary c-a(X, Y) and replaces (3) by

free(X) < step(X,Y),a(X,Y) (4)

An illustration (Continued)

Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5) <+,
step(4,6) <, step(5,2) <, busy(3) <, busy(6) < };

S+ = {free(1), free(2), free(5)},

~ = {free(3), free(4), free(6) };

» Rule (3) free(X) + step(X, Y) covers ET as well as
free(4) € £~. Assumption Introduction gives a(X, Y') with
contrary c-a(X, Y) and replaces (3) by
free(X) < step(X,Y),a(X,Y) (4)
» Then, we add positive and negative examples for c-a(X, Y):
& = {c-a(4,6)},
& ={ca(1,2),c-a(2,4), c-a(2,5), c-a(5,2) }.

An illustration (Continued)

Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5) <+,
step(4,6) <, step(5,2) <, busy(3) <, busy(6) < };

S+ = {free(1), free(2), free(5)},

~ = {free(3), free(4), free(6) };

» Rule (3) free(X) + step(X, Y) covers ET as well as
free(4) € £~. Assumption Introduction gives a(X, Y') with
contrary c-a(X, Y) and replaces (3) by
free(X) < step(X,Y),a(X,Y) (4)
» Then, we add positive and negative examples for c-a(X, Y):
& = {c-a(4,6)},
& ={ca(1,2),c-a(2,4), c-a(2,5), c-a(5,2) }.

c-a(X, Y) « busy(Y) (6)

An illustration (Continued)
Given R = {step(1,2) <, step(1,3) <, step(2,4) <, step(2,5) <+,
step(4,6) <, step(5,2) <, busy(3) <, busy(6) < };
S+ = {free(1), free(2), free(5)},
~ = {free(3), free(4), free(6) };

» Rule (3) free(X) + step(X, Y) covers ET as well as
free(4) € £~. Assumption Introduction gives a(X, Y') with
contrary c-a(X, Y) and replaces (3) by
free(X) < step(X,Y),a(X,Y) (4)
» Then, we add positive and negative examples for c-a(X, Y):
& = {c-a(4,6)},
& ={ca(1,2),c-a(2,4), c-a(2,5), c-a(5,2) }.
> ...
c-a(X,Y) < busy(Y) (6)
The final learnt set of rules is R U {(4),(6)}.

Explanations: Dispute trees?

Mary (m): account holder traveling in friend's car (c); car
breaks down

R: cov(m,c) < ah(m), tr(m,c), pr(c), not =cov(m,c)
—cov(m, c) + —reg(c, m), not cov'(m, c)
cov'(m, c) < in(m, c)
ah(m) « tr(m, c) « pr(c) <
—reg(c, m) in(m, c) <
L : Herbrand base of R plus (all) NAF literals
A (all) NAF literals
not x = x for all x in the Herbrand base of R

Explanations: Dispute trees?

Mary (m): account holder traveling in friend's car (c); car
breaks down

R: cov(m,c) < ah(m), tr(m,c), pr(c), not =cov(m,c)

—cov(m, c) + —reg(c, m), not cov'(m, c) P : {not —cov(m, c)} F cov(m, c)
cov'(m, c) < in(m, c)
ah(m) «+ tr(m, c) < pr(c) + O : {not cov'(m, c)} F —cov(m, c)
—reg(c, m) in(m, c) < ‘

L Herbrand base of R plus (all) NAF literals P:{}F cov'(m,c)

A (all) NAF literals
not x = x for all x in the Herbrand base of R

Future Work

» Learning AA frameworks: non-discrete data?

Future Work

» Learning AA frameworks: non-discrete data?
» Learning ABA frameworks:

» Formal guarantees

» Implementation and Experiments

» Comparison with other methods/systems to learn logic
programs/argumentation frameworks

» Learning other ABA instances (beyond logic programming)

Future Work

» Learning AA frameworks: non-discrete data?
» Learning ABA frameworks:

» Formal guarantees

» Implementation and Experiments

» Comparison with other methods/systems to learn logic
programs/argumentation frameworks

» Learning other ABA instances (beyond logic programming)

» Does ABA learning generalise AA learning?

Future Work

» Learning AA frameworks: non-discrete data?
» Learning ABA frameworks:

» Formal guarantees

» Implementation and Experiments

» Comparison with other methods/systems to learn logic
programs/argumentation frameworks

» Learning other ABA instances (beyond logic programming)

» Does ABA learning generalise AA learning?

» Integration with sub-symbolic machine learning

Future Work

» Learning AA frameworks: non-discrete data?
» Learning ABA frameworks:

» Formal guarantees

» Implementation and Experiments

» Comparison with other methods/systems to learn logic
programs/argumentation frameworks

» Learning other ABA instances (beyond logic programming)

Does ABA learning generalise AA learning?
Integration with sub-symbolic machine learning
Explanation extraction and user evaluation

Applications

