Using Analogical Proportions for Explanations

Suryani Lim ${ }^{1}$ Henri Prade ${ }^{2}$ Gilles Richard ${ }^{2}$

1. Federation University, Churchill, Australia
2. IRIT - CNRS \& Université Paul Sabatier, Toulouse, France

Explanation is an old topic in AI

- We expect from an "intelligence", even an artificial one, that it can explain its conclusions
- The success of expert systems, based on rules, a little over 30 years ago, had led to work to develop systems capable of explaining their conclusions
- The success of learning methods based on neural networks has renewed interest, over the last past years, in explanation, by raising the problem of explaining the outcome of "black box" methods

Explanations

- Explanation in neural networks is often seen as a problem of sensitivity analysis, In the logical view, we distinguish abductive explanations for "why?" questions contrastive explanations for "why not?" questions

Explanations

- Explanation in neural networks is often seen as a problem of sensitivity analysis, In the logical view, we distinguish
abductive explanations for "why?" questions contrastive explanations for "why not?" questions
- Both in expert systems and in machine learning, we have the knowledge about the process that led to the conclusion to be explained: we know the set of rules used and the classification function
- Such knowledge is no longer necessary in the approach proposed here

Abductive explanation

- \mathcal{A} a set of n attributes $i=1, \cdots, n$ x_{i} a value of attribute i v_{i} a constant in \mathcal{D}_{i}, domain of attribute i $\mathcal{D}=\mathcal{D}_{1} \times \cdots \times \mathcal{D}_{n}$ and $c l$ a classification function
- Given $c l(v)=c_{0}$ for $v=\left(v_{1}, \cdots, v_{n}\right)$, an abductive explanation (by prime implicant) consists of any minimal subset $\mathcal{X} \subseteq \mathcal{A}$ such that
$\forall x \in \mathcal{D} \cdot\left[\bigwedge_{i \in \mathcal{X}}\left(x_{i}=v_{i}\right)\right] \rightarrow\left(c l(x)=c_{0}\right)$
- It is enough to fix the values x_{i} of attributes in \mathcal{X} to v_{i} for insuring that $c l(x)=c_{0}$

Contrastive explanation

- Given $c l(v)=c_{0}$, a contrastive explanation consists of any minimal subset $\mathcal{Y} \subseteq \mathcal{A}$ such that

$$
\exists x \in \mathcal{D} \cdot\left[\bigwedge_{j \in \mathcal{A} \backslash y}\left(x_{j}=v_{j}\right)\right] \wedge\left(c l(x) \neq c_{0}\right)
$$

- One can find an x, outside c_{0}, which coincides with v on a maximal subset of attributes, i.e., one can perform a minimal change on v so that x is no longer in c_{0}
- This corresponds to an answer to a question "Why not $c l(v) \neq c_{0}$?", i.e., one identifies the attributes whose value should be changed for that

Boolean modeling

- analogical proportion :"a is to b as c is to $d "$ "the calf is to the cow
- $a: b:: c: d=$ as the foal is to the mare"

$$
\begin{gathered}
((a \wedge \neg b) \equiv(c \wedge \neg d)) \wedge((\neg a \wedge b) \equiv(\neg c \wedge d)) \\
0: 0:: 0: 0 \\
1: 1:: 1: 1 \\
0: 1:: 0: 1 \\
1: 0:: 1: 0 \\
0: 0:: 1: 1 \\
1: 1:: 0: 0
\end{gathered}
$$

- nominal values
$(a, b, c, d) \in\{(g, g, g, g),(g, h, g, h),(g, g, h, h)\}$

Example and properties

- items $a, b, c ; d:$ vectors de values of n attributes
$a: b:: c: d$ ssi $\forall i \in\{1, \cdots, n\}, a_{i}: b_{i}:: c_{i}: d_{i}$
Table: AP: example with Boolean and nominal attributes
- | | mammal | carnivore | young | adult | family |
| :---: | :---: | :---: | :---: | :---: | :---: |
| calf | 1 | 0 | 1 | 0 | bovidae |
| cow | 1 | 0 | 0 | 1 | bovidae |
| foal | 1 | 0 | 1 | 0 | equidae |
| mare | 1 | 0 | 0 | 1 | equidae |

Example and properties

- items $a, b, c ; d:$ vectors de values of n attributes
$a: b:: c: d$ ssi $\forall i \in\{1, \cdots, n\}, a_{i}: b_{i}:: c_{i}: d_{i}$
Table: AP: example with Boolean and nominal attributes

A reading of data oriented towards explanation

	$\mathcal{A}_{1} \ldots \mathcal{A}_{i-1}$	$\mathcal{A}_{i} \ldots \mathcal{A}_{j-1}$	$\mathcal{A}_{j} \ldots \mathcal{A}_{k-1}$	$\mathcal{A}_{k} \ldots \mathcal{A}_{r-1}$	$\mathcal{A}_{r \ldots} \mathcal{A}_{s-1}$	$\mathcal{A}_{s} \ldots \mathcal{A}_{n}$	\mathcal{C}
a	1	0	1	0	1	0	p
b	1	0	1	0	0	1	q
c	1	0	0	1	1	0	p
d	1	0	0	1	0	1	q

\square

A reading of data oriented towards explanation

	$\mathcal{A}_{1} \ldots \mathcal{A}_{i-1}$	$\mathcal{A}_{i} \ldots \mathcal{A}_{j-1}$	$\mathcal{A}_{j} \ldots \mathcal{A}_{k-1}$	$\mathcal{A}_{k} \ldots \mathcal{A}_{r-1}$	$\mathcal{A}_{r} \ldots \mathcal{A}_{s-1}$	$\mathcal{A}_{s} \ldots \mathcal{A}_{n}$	\mathcal{C}
a	1	0	1	0	1	0	p
b	1	0	1	0	0	1	q
c	1	0	0	1	1	0	p
d	1	0	0	1	0	1	q

- $(p \neq q)$ The change of value of \mathcal{C} from p to q between a and b and between c and d can only be explained by, giving the data, the change of values of attributes from \mathcal{A}_{r} to \mathcal{A}_{n}
(which is the same for the pair (a, b) and pair (c, d))

A reading of data oriented towards explanation

	$\mathcal{A}_{1} \ldots \mathcal{A}_{i-1}$	$\mathcal{A}_{i} \ldots \mathcal{A}_{j-1}$	$\mathcal{A}_{j} \ldots \mathcal{A}_{k-1}$	$\mathcal{A}_{k} \ldots \mathcal{A}_{r-1}$	$\mathcal{A}_{r} \ldots \mathcal{A}_{s-1}$	$\mathcal{A}_{s \ldots} \mathcal{A}_{n}$	\mathcal{C}
a	1	0	1	0	1	0	p
b	1	0	1	0	0	1	q
c	1	0	0	1	1	0	p
d	1	0	0	1	0	1	q

- $(p \neq q)$ The change of value of \mathcal{C} from p to q between a and b and between c and d can only be explained by, giving the data, the change of values of attributes from \mathcal{A}_{r} to \mathcal{A}_{n}
(which is the same for the pair (a, b) and pair (c, d))
- see these pairs as instances of a rule expressing that the change on attributes from \mathcal{A}_{r} to \mathcal{A}_{n} determines the change for \mathcal{C} whatever the context

Illustrative example

case	Situation 2	c. $-i$.	dec.	opt. 1	opt. 2
a	sit $_{1}$	yes	δ	0	0
b	sit $_{1}$	no	δ	1	0
c	sit $_{2}$	yes	δ	0	1
d	sit $_{2}$	no	δ	$\mathbf{1}$	$\mathbf{1}$

- decision: serve a coffee with or without sugar (option 1), with or without milk (option 2) to a person What to do in $s i t_{2}$ if no c.i. ?

Illustrative example

case	situation	c. $-i$.	dec.	opt. 1	opt. 2
a	sit $_{1}$	yes	δ	0	0
b	sit $_{1}$	no	δ	1	0
c	sit $_{2}$	yes	δ	0	1
d	sit $_{2}$	no	δ	$\mathbf{1}$	$\mathbf{1}$

- decision: serve a coffee with or without sugar (option 1), with or without milk (option 2) to a person What to do in sit $_{2}$ if no c. i. ?
- question "why milk and sugar for d ?" answer (for milk) "because we are in sit (not in sit $_{1}$)" "because there is no c. i." for sugar

Illustrative example

case	situation 2	c. $-i$.	dec.	opt. 1	opt. 2
a	sit $_{1}$	yes	δ	0	0
b	sit $_{1}$	no	δ	1	0
c	sit $_{2}$	yes	δ	0	1
d	sit $_{2}$	no	δ	$\mathbf{1}$	$\mathbf{1}$

- decision: serve a coffee with or without sugar (option 1), with or without milk (option 2) to a person What to do in sit $_{2}$ if no c. i. ?
- question "why milk and sugar for d ?" answer (for milk) "because we are in sit (not in sit t_{1})" "because there is no c. i." for sugar question "why no milk for b ?", answer "because we are in sit (not in sit t_{2})"

Analogy and contrastive explanations

| case | context | change | class |
| :---: | :---: | :---: | :---: | :---: |
| a | sit $_{1}$ | yes | p |
| b | sit $_{1}$ | no | q |
| c | sit $_{2}$ | yes | p |
| d | sit $_{2}$ | no | q |

Table: Schematic situation of analogical explanation

- The answer to the question "why d is not in class p ?" relies in the values taken d for the attributes in change. When c is a close neighbor of d, the number of attributes in change is small. We are close to a contrastive explanation :
$\exists x=c \in \mathcal{S} \cdot\left[\bigwedge_{j \in \mathcal{A} \backslash \text { change }}\left(x_{j}=c_{j}=d_{j}\right)\right] \wedge(c l(x) \neq q)$
- contrastive explanation
$\exists x \in \mathcal{D} .\left[\operatorname{Disagree}(x, v)=\mathcal{Y} \wedge\left(c l(x) \neq c_{0}\right)\right]$

Analogy and abductive explanation

- The explanation is richer here, one knows at least another pair (here (a, b)) that corresponds to another context where the same change of attribute values leads to the same change of classe, which suggests the possibility of rules \forall sit,
$($ contexte $=$ sit $) \wedge($ chang.$=$ oui $) \rightarrow c l(($ sit, non $))=p$
$($ contexte $=$ sit $) \wedge($ chang.$=$ non $) \rightarrow c l(($ sit, non $))=q$
The rules enable a reading of the Table with an abductive explanation flavor, which says why the item is in class p (or in class q).
abductive explanation

$$
\forall x .\left[(\operatorname{Acc} .(x, v)=\mathcal{X}) \rightarrow\left(c l(x)=c_{0}\right)\right]
$$

Confidence in explanations

case	context	change	class
\vec{a}	sit $_{1}$	yes	p
\vec{b}	sit $_{1}$	no	q
\vec{c}	sit $_{2}$	yes	p
\vec{d}	sit $_{2}$	no	q
$\overrightarrow{a^{\prime}}$	sit $^{\prime}$	yes	p
$\overrightarrow{b^{\prime}}$	sit $^{\prime}$	no	p

- BUT exception if $\exists\left(\overrightarrow{a^{\prime}}, \overrightarrow{b^{\prime}}\right)$ s. t. $\overrightarrow{a^{\prime}}=\left(s^{\prime} t^{\prime}\right.$, yes $)$, $\overrightarrow{b^{\prime}}=\left(s i t^{\prime}, n o\right)$ with $c l\left(\overrightarrow{a^{\prime}}\right)=c l\left(\overrightarrow{b^{\prime}}\right)=p$
- So we may calculate the confidence and support of the rule associated with pairs (a, b) and (c, d) in the data set

Concluding remarks - 1

- Explanatory use of analogical proportions in learning Hüllermeier (2020)
- Analogical proportions have great explanatory potential from data
- "why" and "why not" questions can be answered

Concluding remarks - 1

- Explanatory use of analogical proportions in learning Hüllermeier (2020)
- Analogical proportions have great explanatory potential from data
- "why" and "why not" questions can be answered
- has been implemented
- interesting to precompile the data set in pairs by identifying where items are equal and where and how they differ to facilitate an analogical analysis of the data - start by determining the relevant attributes,
- confidence, support of rules associated with pairs

Concluding remarks - 2

- apply to preferences learning

From $a: b:: c: d$ and " a is preferred to b " analogical inference concludes " c is preferred to d " Analogical explanation would also apply

Concluding remarks - 2

- apply to preferences learning

From $a: b:: c: d$ and " a is preferred to b " analogical inference concludes " c is preferred to d "

Analogical explanation would also apply

- A 2nd kind of analogical proportion where a and c on the one hand and b and d on the other hand belong to 2 different universes: "this drug is to colds what aspirin is to headache" (it is quite effective and cheap)
- Analogical proportions have an explanatory value "Star Wars (1977) is to Raiders of the Lost Ark (1981) as Return of the Jedi (1983) is to Indiana Jones and the Last Crusade (1989)"

