Analogical Proportions, Multivalued Dependencies and Explanations

Sebastian Link ${ }^{1}$ Henri Prade ${ }^{2}$ Gilles Richard ${ }^{2}$

1- School of Computer Science, The University of Auckland, Auckland, New Zealand
2. IRIT - CNRS \& Université Paul Sabatier, Toulouse, France

Two unrelated fields

- It is always striking to see that the same concept has been introduced independently and for different purposes in two unrelated fields
- analogical reasoning
and analogical proportion
- database design and (weak) multivalued dependencies

Analogical proportions - 1

- " a is to b as c is to d "
a differs from b as c differs from d and b differs from a as d differs from c ".
- $a: b:: c: d \triangleq$

$$
((a \wedge \neg b) \equiv(c \wedge \neg d)) \wedge((\neg a \wedge b) \equiv(\neg c \wedge d))
$$

it uses dissimilarity indicators only

- $a: b:: c: d$ satisfies the key properties of an analogical proportion, namely
- reflexivity: $a: b: a: b$
- symmetry: $a: b:: c: d \Rightarrow c: d:: a: b$
- central permutation: $a: b:: c: d \Rightarrow a: c:: b: d$
- also satisfies a : $a:: b: b$ and external permutation $a: b:: c: d \Rightarrow d: b:: c: a$

Nominal values

- a, b, c, d belong to a finite attribute domain \mathcal{A}

Then, $a: b:: c: d$ holds true only for the 3 patterns $(a, b, c, d) \in\{(g, g, g, g),(g, h, g, h),(g, g, h, h)\}$ This generalizes the Boolean case $\mathcal{A}=\{0,1\}$.

- Items are represented by
tuples of n attribute values:
$a=\left(a_{1}, \cdots, a_{n}\right) \quad a_{i}$ is the value of attribute i
$a: b:: c: d$ true iff $\forall i \in\{1, \ldots, n\}, a_{i}: b_{i}:: c_{i}: d_{i}$ true
- graded version of analogical proportions in case of numerical attributes

Example and analogical inference

 course teacher timea Maths Peter 8 am
b Maths Peter 2 pm
c Maths Mary 8 am
d Maths Mary 2 pm

Assuming that the AP $a: b:: c: d$ is true, one can calculate d from a, b, c (except if $a \neq b=c$)

$$
\frac{\forall i \in\{1, \ldots, n\}, \quad a_{i}: b_{i}:: c_{i}: d_{i} \text { holds }}{a_{n+1}: b_{n+1}:: c_{n+1}: d_{n+1} \text { holds }}
$$

If $a_{n+1}, b_{n+1}, c_{n+1}$ are known, this enables the prediction of d_{n+1}, provided that $a_{n+1}: b_{n+1}:: c_{n+1}: x$ is solvable

Functional dependencies

- relation r - a finite set of tuples over a set of attributes R
- $t[X]$: restriction of a tuple t to attributes in $X \subseteq R$ $t[X Y]$ is short for $t[X \cup Y]$.
- A functional dependency $X \rightarrow Y \quad X, Y \subseteq R$ for any pair of tuples t_{1} and t_{2} obeying the relational schema R
if $t_{1}[X]=t_{2}[X]$ then $t_{1}[Y]=t_{2}[Y]$ which reads " X determines Y "
- "The value of X explains the value of Y "

Multi-valued dependencies (R. Fagin, 1977)

- $X \rightarrow Y$ " X multi-determines Y "
holds on R if, for all pairs of tuples t_{1} and t_{2} in r such that $t_{1}[X]=t_{2}[X]$, there exists a tuple t_{3} in r such that $t_{3}[X Y]=t_{1}[X Y]$ and $t_{3}[X(R \backslash Y)]=t_{2}[X(R \backslash Y)]$

Multi-valued dependencies (R. Fagin, 1977)

- $X \rightarrow Y$ " X multi-determines Y " holds on R if, for all pairs of tuples t_{1} and t_{2} in r such that $t_{1}[X]=t_{2}[X]$, there exists a tuple t_{3} in r such that $t_{3}[X Y]=t_{1}[X Y]$ and $t_{3}[X(R \backslash Y)]=t_{2}[X(R \backslash Y)]$ there also exists a tuple t_{4} in r such as $t_{4}[X Y]=t_{2}[X Y]$ and $t_{4}[X(R \backslash Y)]=t_{1}[X(R \backslash Y)]$
- (x, y, z) the tuple having values x, y, z for subsets $X, Y, R \backslash(X \cup Y)$ respectively, then whenever the tuples (p, q, r) and (p, s, u) exist in r, the tuples (p, q, u) and (p, s, r) should also exist in r.

Analogical proportion!

	X	Y	$Z=R \backslash(X \cup Y)$
t_{1}	p	q	r
t_{4}	p	s	r
t_{3}	p	q	u
t_{2}	p	s	u

the set of values of Y is logically independent of set Z and vice versa (in the context $X=p$).

Example

course	teacher	time
Maths	Peter	8 am
Maths	Peter	2 pm
Maths	Mary	8 am
Maths	Mary	2 pm
Maths	Paul	8 am
Maths	Paul	2 pm
mp. Sci.	Peter	8 am
omp. Sci.	Mary	8 am

Table: Multivalued dependencies: \{course\} \rightarrow \{teacher\}; \{course $\} \rightarrow$ \{time \}

course	teacher	time
Maths	$\{$ Peter, Mary, Paul $\}$	$\{8 \mathrm{am}, 2 \mathrm{pm}\}$
Comp. Sci.	$\{$ Peter, Mary $\}$	$\{8 \mathrm{am}\}$

Weak multi-valued dependencies

- A weak multivalued dependency (Fischer,1984) $X \rightarrow{ }_{w} Y$ holds on R if, for all tuples t_{1}, t_{2}, t_{3} in r such that $t_{1}[X Y]=t_{2}[X Y]$ and $t_{1}[X(R \backslash Y)]=t_{3}[X(R \backslash Y)]$
there is some tuple t_{4} in r such that $t_{4}[X Y]=t_{3}[X Y]$ and $t_{4}[X(R \backslash Y)]=t_{2}[X(R \backslash Y)]$
- if $X \rightarrow Y$ then $X \rightarrow{ }_{w} Y$
- $t_{1}: t_{2}:: t_{3}: t_{4}$
t_{4} can be computed from t_{1}, t_{2}, t_{3}

Is Resu	forsha fait ${ }^{\text {a }}$ (fues		Z (sex)	Result
a	s	yes	F	P
b	s	yes	M	P
c	s	no	F	N
d	s	no	M	P

- The answer to the question " why Result (d) is not N ?" is to be found in the value of the sex attribute for d
- Estimating fairness is a matter of conditional stochastic independence
- Multi-valued dependencies and thus analogical proportions exhibit logical independence relations
- The violation of an analogical proportion (and thus of a multivalued dependency) suggests that Result(d) is unfair

Concluding remarks

- Further developments (besides fairness)?
- The axiomatic characterization of dependencies may bring some new light on analogical proportions
- Impact on explanation capabilities ?
- Impact on analogical querying?
- Can we handle uncertain data with analogical proportions, as in database design?

