Analogical Proportions, Multivalued Dependencies and Explanations

Sebastian Link¹ Henri Prade² Gilles Richard²

1- School of Computer Science, The University of Auckland, Auckland, New Zealand

2. IRIT - CNRS & Université Paul Sabatier, Toulouse, France

Link & Prade & Richard

不同 トイモトイモ

Two unrelated fields

- It is always striking to see that the same concept has been introduced independently and for different purposes in two unrelated fields
- analogical reasoning

and analogical proportion

database design

and (weak) multivalued dependencies

Analogical proportions - 1

• " a is to b as c is to d" a differs from b as c differs from d and b differs from a as d differs from c.". • $a \cdot b \cdot c \cdot d \triangleq$ $((a \land \neg b) \equiv (c \land \neg d)) \land ((\neg a \land b) \equiv (\neg c \land d))$ it uses dissimilarity indicators only • a : b :: c : d satisfies the key properties of an analogical proportion, namely • reflexivity: a: b: a: b • symmetry: $a:b::c:d \Rightarrow c:d::a:b$ • central permutation: $a:b::c:d \Rightarrow a:c::b:d$ also satisfies a · a · b · b and external permutation $a : b :: c : d \Rightarrow d : b :: c : a$

Nominal values

a, b, c, d belong to a *finite* attribute domain A
 Then, a : b :: c : d holds true only for the 3 patterns
 (a, b, c, d) ∈ {(g, g, g, g), (g, h, g, h), (g, g, h, h)}
 This generalizes the Boolean case A = {0, 1}.

• *Items* are represented by *tuples of n attribute values*: $a = (a_1, \dots, a_n)$ a_i is the value of attribute i

a : b :: c : d true iff $\forall i \in \{1, ..., n\}, a_i : b_i :: c_i : d_i$ true

• *graded* version of analogical proportions in case of *numerical attributes*

Link & Prade & Richard

Example and analogical inference

	course	teacher	time
а	Maths	Peter	8 am
b	Maths	Peter	2 pm
С	Maths	Mary	8 am
d	Maths	Mary	2 pm

Assuming that the AP a : b :: c : d is true, one can *calculate* d from a, b, c (except if $a \neq b = c$)

 $\frac{\forall i \in \{1, ..., n\}, a_i : b_i :: c_i : d_i \text{ holds}}{a_{n+1} : b_{n+1} :: c_{n+1} : d_{n+1} \text{ holds}}$ If a_{n+1} , b_{n+1} , c_{n+1} are known, this enables the prediction of d_{n+1} , provided that $a_{n+1} : b_{n+1} :: c_{n+1} : x$ is solvable

Link & Prade & Richard

Functional dependencies

- relation r a finite set of tuples over a set of attributes R
 - t[X]: restriction of a tuple t to attributes in $X \subseteq R$ t[XY] is short for $t[X \cup Y]$.
- A functional dependency X → Y X, Y ⊆ R for any pair of tuples t₁ and t₂ obeying the relational schema R if t₁[X] = t₂[X] then t₁[Y] = t₂[Y] which reads "X determines Y"
- "The value of X explains the value of Y"

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multi-valued dependencies (R. Fagin, 1977)

• $X \rightarrow Y$ "X multi-determines Y" holds on R if, for all pairs of tuples t_1 and t_2 in r such that $t_1[X] = t_2[X]$, there exists a tuple t_3 in r such that $t_3[XY] = t_1[XY]$ and $t_3[X(R \setminus Y)] = t_2[X(R \setminus Y)]$

tuples (p, q, r) and (p, s, u) exist in r, the tuples (p, q, u) and (p, s, r) should also exist in r.

Multi-valued dependencies (R. Fagin, 1977)

• $X \rightarrow Y$ "X multi-determines Y" holds on R if, for all pairs of tuples t_1 and t_2 in r such that $t_1[X] = t_2[X]$, there exists a tuple t_3 in r such that $t_3[XY] = t_1[XY]$ and $t_3[X(R \setminus Y)] = t_2[X(R \setminus Y)]$ there also exists a tuple t_4 in r such as $t_4[XY] = t_2[XY]$ and $t_4[X(R \setminus Y)] = t_1[X(R \setminus Y)]$ • (x, y, z) the tuple having values x, y, z for subsets X, Y, $R \setminus (X \cup Y)$ respectively, then whenever the tuples (p, q, r) and (p, s, u) exist in r, the tuples

(p, q, u) and (p, s, r) should also exist in r.

Analogical proportion!

	X	Y	$Z = R \setminus (X \cup Y)$
<i>t</i> ₁	р	q	r
<i>t</i> ₄	р	S	r
t ₃	р	q	U
<i>t</i> ₂	р	S	U

the set of values of *Y* is *logically independent* of set *Z* and vice versa (in the context X = p).

		ogical proportion	Multivalued dependence	ies	Explanation and fairness	
Engr	anlo	course	teacher	time		
Exar	npie	Maths	Peter	8 am		
		Maths	Peter	2 pm		
		Maths	Mary	8 am		
	٠	Maths	Mary	2 pm		
		Maths	Paul	8 am		
		Maths	Paul	2 pm		
		Comp. Sci.	Peter	8 am		
		Comp. Sci.	Mary	8 am		
<i>Table:</i> Multivalued dependencies: {course}						
	course	e te	teacher		time	
•	Maths	Feter, N	Mary, Paul	} {8 a	m, 2 pm }	

teachers & time are logically independent of each other

{Peter, Mary}

Link & Prade & Richard

Comp. Sci.

{8 am}

- A weak multivalued dependency (Fischer, 1984) X → W Y holds on R if, for all tuples t₁, t₂, t₃ in r such that t₁[XY] = t₂[XY] and t₁[X(R \ Y)] = t₃[X(R \ Y)] there is some tuple t₄ in r such that t₄[XY] = t₃[XY] and t₄[X(R \ Y)] = t₂[X(R \ Y)]
 if X → Y then X → W Y
- $t_1 : t_2 :: t_3 : t_4$

 t_4 can be computed from t_1, t_2, t_3

Is R

e	sul	for d fair (and a shared values)	fyno _{lip} ioma)?	Z (sex)	Result
	а	S	yes	F	Р
	b	S	yes	М	Р
	С	S	no	F	N
	d	S	no	М	P

- The answer to the question "why Result(d) is not N?" is to be found in the value of the sex attribute for d
 Estimating fairness is a matter of conditional
 - stochastic independence
 - Multi-valued dependencies and thus analogical proportions exhibit logical independence relations
 - The *violation* of an analogical proportion (and thus of a multivalued dependency) suggests that *Result(d)* is unfair

Concluding remarks

• Further developments (besides fairness)?

• The axiomatic characterization of dependencies may bring some new light on analogical proportions

- Impact on explanation capabilities ?
- Impact on analogical querying?
- Can we handle uncertain data with analogical proportions, as in database design?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >