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Introduction (1/2)

Conditional: (B|A), intuition:

“if A, then usually B”

Inductive inference: Draw conclusions from a set of conditionals

→ Different approaches to draw inferences,
e.g., p-entailment, system Z, . . .
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Introduction (2/2)

System W [Komo, Beierle 2020; 2022] is a relatively new inductive inference operator shown to,
e.g., extend rational closure, or satisfy (SynSplit) and (CSynSplit).

Multipreference closure (MP-closure): defined for reasoning in description logics with exceptions;
recently transferred to propositional conditionals [Giordani, Gliozzi 2021].

Plan for this talk:

▶ background on conditionals and preferential models
▶ recall system W
▶ recall MP-closure
▶ provide semantical characterization of MP-closure with system W

(which is less involved than the original definition/characterization of system W)
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Conditional Logic

Syntax:
Conditionals (B|A) with A,B prop. formulas over some finite signature Σ;

intuition:

“if A, then usually B”

Three valued semantic [deFinetti 1937]:
▶ (B|A) verified by ω if ω |= AB

▶ (B|A) falsified by ω if ω |= AB

▶ (B|A) not applicable to ω if ω |= A

Belief base: Finite set of conditionals ∆ = {(B1|A1), . . . , (Bn|An)}

Example (belief base)

∆ = {(b|p), (f |b), (¬f |p)} “Penguin triangle”

Reasoning: Given a belief base, find all conditionals entailed by it.
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Preferential Models

Definition (preferential model [Lehmann Magidor 1992])

A triple M = ⟨S, l,≺⟩ consisting of
▶ a set S of states,
▶ a function l : S → Ω, and
▶ a strict partial order on S

such that for every A ∈ LΣ: Â = {s | s ∈ S, l(s) |= A} is smooth.

Every preferential model induces an inference relation:

A |∼MB iff for any s minimal in Â it holds that l(s) |= B.

(B|A) is accepted by M if A |∼MB.
M is a model for belief base ∆ if M accepts all conditionals in ∆.
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(B|A) is accepted by M if A |∼MB.
M is a model for belief base ∆ if M accepts all conditionals in ∆.



6/19

System W – Intro

System W is an inductive inference operator [Komo, Beierle 2020; 2022]

Idea:
▶ use the tolerance partition of the belief base
▶ take into account which conditionals are falsified by a world
▶ inference relation based on a partial ordering on worlds
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Tolerance Partition

Inclusion maximal tolerance partition [Pearl 1990]

OP(∆) = (∆0, . . . ,∆n) with . . .

→ The same partition as in the definition of system Z.

Intuition: More specific conditionals are in a later part of OP(∆).

Example

For ∆ = {(b|p), (f |b), (¬f |p)}:

OP(∆) = (∆0,∆1) with
∆0 = {(b|p), (f |b)} and
∆1 = {(¬f |p)}
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System W – Definition

Preferred structure on worlds <w
∆:

▶ strict partial ordering <w
∆ on Ω

▶ based on the tolerance partition
▶ worlds that falsify less conditionals are ordered lower in <w

∆

System W, |∼ w
∆[Komo Beierle 2022]

A |∼ w
∆B

if for every ω′ ∈ ΩAB there is an ω ∈ ΩAB such that ω <w
∆ ω′.
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System W – Example

Belief base:
∆ = {(b|a), (ab|a ∨ b), (c|⊤)}

Ordered partition:
∆0 = {(b|a), (ab|a ∨ b), (c|⊤)}

Preferred structure on worlds <w
∆:

abc

abc abc

abc abc abc

abc abc

Entailment: e.g. ab ∨ ab |∼ w
∆ab
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Properties of System W

✓ System W extends rational closure.

✓ System W fulfills syntax splitting (SynSplit).

✓ System W avoids the drowning problem.

✓ System W satisfies conditional syntax splitting (CSynSplit).

lexicographic inferencesystem W

system Z

c-inference

p-entailment
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System W Preferential Models

Definition (system W preferential model Mw(∆) )

The system W preferential model (for belief base ∆) is

Mw(∆) = ⟨Ω, id, <w
∆⟩.

Proposition

For consistent ∆: A |∼Mw(∆)B iff A |∼ w
∆B.
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MP-closure – Intro

MP-closure was originally used for reasoning in DL with exceptions
Recently reconstructed for propositional conditional beliefs by [Giordano Gliozzi 2021]

Idea:

▶ Order subsets of ∆ by the “exceptionality” of the contained conditionals
▶ To check if a conditional is entailed

▶ find maximal subsets of ∆ that are classically logical consistent with the antecedent
▶ sceptical reason about these sets
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MP-seriousness Ordering

Definition (exceptionality and rank of a conditional [Lehmann Magidor 1992])

A conditional is exceptional for ∆ if . . .

MP-seriousness ordering ≺MP
∆ :

▶ strict partial ordering ≺MP
∆ on subsets of ∆

▶ based on the notion of exceptionality
▶ sets containing fewer exceptional conditionals are lower in ≺MP

∆
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MP-closure – Definition

Definition (MP-basis [Giordano Gliozzi 2021])

A set D ⊆ ∆ is an MP-basis for A if
▶ A is consistent with D̃ = {B → C | (C|B) ∈ D}, and
▶ D is maximal with respect to the MP-seriousness ordering

MP-model:
▶ Set of models based

Definition (MP-closure [Giordano Gliozzi 2021])

A |∼MP
∆ B

if for all MP-bases D of A it holds that D̃ ∪ {A} |= B.

→ Similar construction as in the definition of lexicographic inference [Lehmann 1995].
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System W and MP-closure

Connection between System W and MP-closure

MP-closure coincides with system W (for consistent belief bases ∆).

Show this in three steps:

Step 1: Characterization of MP-closure with MP-models [Giordano Gliozzi 2021].
Step 2: Show system W preferential models are MP-models.
Step 3: Prove main theorem.
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Step 1: Characterization with MP-models

MP-model:
▶ certain type of preferential model

▶ obtained by applying a functor F∆ to preferential models
▶ F∆ orders states by comparing the conditionals falsified by each world with ≺MP

∆

Proposition (MP-closure representation theorem [GG21])

A |∼MP
∆ B iff (B|A) is accepted by every MP-model of ∆
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∆ B iff (B|A) is accepted by every MP-model of ∆
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Step 2: System W preferential models are MP-models

For a consistent belief base ∆:

Proposition

∆ tolerates (B|A) iff (B|A) is not exceptional for ∆

Proposition

ξ(ω) ≺MP
∆ ξ(ω′) iff ω <w

∆ ω′.

Proposition

The system W preferential model Mw(∆) is an MP-model of ∆.
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Step 3: System W coincides with MP-closure

Proposition ([Giordano Gliozzi 2021])

Let N ,N ′ be MP-models of ∆.

A |∼NB iff A |∼N ′B.

Theorem
For a consistent belief base ∆ and A,B ∈ LΣ:
▶ A |∼MP

∆ B iff A |∼Mw(∆)B.

▶ A |∼MP
∆ B iff A |∼ w

∆B.
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Summary

Theorem
For a consistent belief base ∆ and A,B ∈ LΣ: A |∼MP

∆ B iff A |∼ w
∆B.

This result yields
▶ a semantical characterization of system W
▶ that is less involved than the original definition/characterization.

Future work:

▶ Further investigate the relations among inductive inference operators
▶ Further investigate the connections to reasoning with first-order-conditionals
▶ Generalize system W for belief bases containing strict knowledge

(i.e. belief bases enforcing impossible worlds)
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