Characterizing Multipreference Closure with System W

Jonas Haldimann Christoph Beierle

FernUniversität in Hagen

SUM 2022 October 17–19 **Conditional:** (B|A), intuition:

"if A, then usually B"

Conditional: (B|A), intuition:

"if A, then usually B"

Inductive inference: Draw conclusions from a set of conditionals

Conditional: (B|A), intuition:

"if A, then usually B"

Inductive inference: Draw conclusions from a set of conditionals

 \rightarrow Different approaches to draw inferences, e.g., p-entailment, system Z, ...

Multipreference closure (MP-closure): defined for reasoning in description logics with exceptions; recently transferred to propositional conditionals [Giordani, Gliozzi 2021].

Multipreference closure (MP-closure): defined for reasoning in description logics with exceptions; recently transferred to propositional conditionals [Giordani, Gliozzi 2021].

Plan for this talk:

background on conditionals and preferential models

Multipreference closure (MP-closure): defined for reasoning in description logics with exceptions; recently transferred to propositional conditionals [Giordani, Gliozzi 2021].

Plan for this talk:

- background on conditionals and preferential models
- recall system W

Multipreference closure (MP-closure): defined for reasoning in description logics with exceptions; recently transferred to propositional conditionals [Giordani, Gliozzi 2021].

Plan for this talk:

- background on conditionals and preferential models
- recall system W
- recall MP-closure

Multipreference closure (MP-closure): defined for reasoning in description logics with exceptions; recently transferred to propositional conditionals [Giordani, Gliozzi 2021].

Plan for this talk:

- background on conditionals and preferential models
- recall system W
- recall MP-closure
- provide semantical characterization of MP-closure with system W (which is less involved than the original definition/characterization of system W)

Syntax:

Conditionals (B|A) with A, B prop. formulas over some finite signature Σ ;

Syntax:

Conditionals (B|A) with A, B prop. formulas over some finite signature Σ ; intuition:

"if A, then usually B"

Syntax:

Conditionals (B|A) with A, B prop. formulas over some finite signature Σ ; intuition:

"if A, then usually B"

Three valued semantic [deFinetti 1937]:

- $\blacktriangleright \ (B|A) \text{ verified by } \omega \quad \text{ if } \omega \models AB$
- $\blacktriangleright (B|A) \text{ falsified by } \omega \quad \text{ if } \omega \models A\overline{B}$
- (B|A) not applicable to ω if $\omega \models \overline{A}$

Syntax:

Conditionals (B|A) with A, B prop. formulas over some finite signature Σ ; intuition:

"if A, then usually B"

Three valued semantic [deFinetti 1937]:

- $\blacktriangleright \ (B|A) \text{ verified by } \omega \quad \text{ if } \omega \models AB$
- $\blacktriangleright (B|A) \text{ falsified by } \omega \quad \text{ if } \omega \models A\overline{B}$
- (B|A) not applicable to ω if $\omega \models \overline{A}$

Belief base: Finite set of conditionals $\Delta = \{(B_1|A_1), \dots, (B_n|A_n)\}$

Syntax:

Conditionals (B|A) with A, B prop. formulas over some finite signature Σ ; intuition:

"if A, then usually B"

Three valued semantic [deFinetti 1937]:

- $\blacktriangleright \ (B|A) \text{ verified by } \omega \quad \text{ if } \omega \models AB$
- $\blacktriangleright \ (B|A) \text{ falsified by } \omega \quad \text{ if } \omega \models A\overline{B}$
- (B|A) not applicable to ω if $\omega \models \overline{A}$

Belief base: Finite set of conditionals $\Delta = \{(B_1|A_1), \dots, (B_n|A_n)\}$

Example (belief base)

 $\Delta = \{(b|p), (f|b), (\neg f|p)\} \qquad \text{``Penguin triangle''}$

Syntax:

Conditionals (B|A) with A, B prop. formulas over some finite signature Σ ; intuition:

"if A, then usually B"

Three valued semantic [deFinetti 1937]:

- $\blacktriangleright \ (B|A) \text{ verified by } \omega \quad \text{ if } \omega \models AB$
- $\blacktriangleright (B|A) \text{ falsified by } \omega \quad \text{ if } \omega \models A\overline{B}$
- (B|A) not applicable to ω if $\omega \models \overline{A}$

Belief base: Finite set of conditionals $\Delta = \{(B_1|A_1), \dots, (B_n|A_n)\}$

Example (belief base)

 $\Delta = \{(b|p), (f|b), (\neg f|p)\}$ "Penguin triangle"

Reasoning: Given a belief base, find all conditionals entailed by it.

A triple $\mathcal{M} = \langle S, l, \prec \rangle$ consisting of

- \blacktriangleright a set S of *states*,
- a function $l: S \to \Omega$, and
- \blacktriangleright a strict partial order on S

such that for every $A \in \mathcal{L}_{\Sigma}$: $\hat{A} = \{s \mid s \in S, l(s) \models A\}$ is smooth.

A triple $\mathcal{M} = \langle S, l, \prec \rangle$ consisting of

- a set S of states,
- a function $l: S \to \Omega$, and
- \blacktriangleright a strict partial order on S

such that for every $A \in \mathcal{L}_{\Sigma}$: $\hat{A} = \{s \mid s \in S, l(s) \models A\}$ is smooth.

Every preferential model induces an inference relation:

 $A \vdash_{\mathcal{M}} B$ iff for any s minimal in \hat{A} it holds that $l(s) \models B$.

A triple $\mathcal{M} = \langle S, l, \prec \rangle$ consisting of

- a set S of states,
- a function $l: S \to \Omega$, and
- \blacktriangleright a strict partial order on S

such that for every $A \in \mathcal{L}_{\Sigma}$: $\hat{A} = \{s \mid s \in S, l(s) \models A\}$ is smooth.

Every preferential model induces an inference relation:

 $A \vdash_{\mathcal{M}} B$ iff for any s minimal in \hat{A} it holds that $l(s) \models B$.

(B|A) is accepted by \mathcal{M} if $A \sim_{\mathcal{M}} B$.

A triple $\mathcal{M} = \langle S, l, \prec \rangle$ consisting of

- a set S of states,
- a function $l: S \to \Omega$, and
- \blacktriangleright a strict partial order on S

such that for every $A \in \mathcal{L}_{\Sigma}$: $\hat{A} = \{s \mid s \in S, l(s) \models A\}$ is smooth.

Every preferential model induces an inference relation:

 $A \vdash_{\mathcal{M}} B$ iff for any s minimal in \hat{A} it holds that $l(s) \models B$.

(B|A) is accepted by \mathcal{M} if $A \succ_{\mathcal{M}} B$.

 ${\mathcal M}$ is a model for belief base Δ if ${\mathcal M}$ accepts all conditionals in $\Delta.$

Idea:

use the tolerance partition of the belief base

Idea:

- use the tolerance partition of the belief base
- ▶ take into account which conditionals are falsified by a world

Idea:

- use the tolerance partition of the belief base
- ▶ take into account which conditionals are falsified by a world
- inference relation based on a partial ordering on worlds

 $OP(\Delta) = (\Delta_0, \dots, \Delta_n)$ with \dots

 $OP(\Delta) = (\Delta_0, \dots, \Delta_n)$ with \dots

 \rightarrow The same partition as in the definition of system Z.

 $OP(\Delta) = (\Delta_0, \dots, \Delta_n)$ with \dots

 \rightarrow The same partition as in the definition of system Z.

Intuition: More specific conditionals are in a later part of $OP(\Delta)$.

 $OP(\Delta) = (\Delta_0, \dots, \Delta_n)$ with \dots

 \rightarrow The same partition as in the definition of system Z.

Intuition: More specific conditionals are in a later part of $OP(\Delta)$.

Example

For $\Delta = \{(b|p), (f|b), (\neg f|p)\}$:

 $OP(\Delta) = (\Delta_0, \dots, \Delta_n)$ with \dots

 \rightarrow The same partition as in the definition of system Z.

Intuition: More specific conditionals are in a later part of $OP(\Delta)$.

Example

$$\begin{split} & \text{For } \Delta = \{(b|p), (f|b), (\neg f|p)\}:\\ & OP(\Delta) = (\Delta_0, \Delta_1) \text{ with }\\ & \Delta_0 = \{(b|p), (f|b)\} \text{ and }\\ & \Delta_1 = \{(\neg f|p)\} \end{split}$$

▶ strict partial ordering $<^{\sf w}_{\Delta}$ on Ω

- ▶ strict partial ordering $<^{\sf w}_{\Delta}$ on Ω
- based on the tolerance partition

- ▶ strict partial ordering $<^{\sf w}_{\Delta}$ on Ω
- based on the tolerance partition
- \blacktriangleright worlds that falsify less conditionals are ordered lower in $<^{\sf w}_\Delta$

- ▶ strict partial ordering $<^{\sf w}_{\Delta}$ on Ω
- based on the tolerance partition
- \blacktriangleright worlds that falsify less conditionals are ordered lower in $<^{\sf w}_\Delta$

- ▶ strict partial ordering $<^{\sf w}_{\Delta}$ on Ω
- based on the tolerance partition
- \blacktriangleright worlds that falsify less conditionals are ordered lower in $<^{\sf w}_\Delta$

System W, $\succ {}^{w}_{\Delta}$ [Komo Beierle 2022]

 $A \models {}^{\mathsf{w}}_{\Delta} B$

 $\text{ if for every } \omega' \in \Omega_{A\overline{B}} \text{ there is an } \omega \in \Omega_{AB} \text{ such that } \omega <^{\sf w}_{\Delta} \omega'.$

Belief base:

 $\Delta = \{ (b|a), (\overline{a}\overline{b}|\overline{a} \vee \overline{b}), (c|\top) \}$

Belief base:

$$\Delta = \{(b|a), (\overline{a}\overline{b}|\overline{a} \vee \overline{b}), (c|\top)\}$$

Ordered partition:

$$\Delta^0 = \{ (b|a), (\overline{a}\overline{b}|\overline{a} \vee \overline{b}), (c|\top) \}$$

Belief base:

$$\Delta = \{ (b|a), (\overline{a}\overline{b}|\overline{a} \vee \overline{b}), (c|\top) \}$$

Ordered partition:

$$\Delta^{0} = \{ (b|a), (\overline{a}\overline{b}|\overline{a} \vee \overline{b}), (c|\top) \}$$

Belief base:

$$\Delta = \{ (b|a), (\overline{a}\overline{b}|\overline{a} \lor \overline{b}), (c|\top) \}$$

Ordered partition:

$$\Delta^{0} = \{ (b|a), (\overline{a}\overline{b}|\overline{a} \vee \overline{b}), (c|\top) \}$$

Preferred structure on worlds $<^{w}_{\Delta}$:

Entailment: e.g. $\overline{a}b \lor a\overline{b} \sim {\overset{\mathsf{w}}{\Delta}} \overline{a}b$

 $\checkmark\,$ System W extends rational closure.

- $\checkmark\,$ System W extends rational closure.
- ✓ System W fulfills syntax splitting (SynSplit).

- $\checkmark\,$ System W extends rational closure.
- ✓ System W fulfills syntax splitting (SynSplit).
- $\checkmark\,$ System W avoids the drowning problem.

- $\checkmark\,$ System W extends rational closure.
- ✓ System W fulfills syntax splitting (SynSplit).
- $\checkmark\,$ System W avoids the drowning problem.
- ✓ System W satisfies conditional syntax splitting (CSynSplit).

- $\checkmark\,$ System W extends rational closure.
- ✓ System W fulfills syntax splitting (SynSplit).
- $\checkmark\,$ System W avoids the drowning problem.
- ✓ System W satisfies conditional syntax splitting (CSynSplit).

Definition (system W preferential model $\mathcal{M}^{\mathsf{w}}(\Delta)$)

The system W preferential model (for belief base Δ) is

$$\mathcal{M}^{\mathsf{w}}(\Delta) = \langle \Omega, \mathrm{id}, <^{\mathsf{w}}_{\Delta} \rangle.$$

Definition (system W preferential model $\mathcal{M}^{\sf w}(\Delta)$)

The system W preferential model (for belief base Δ) is

$$\mathcal{M}^{\mathsf{w}}(\Delta) = \langle \Omega, \mathrm{id}, <^{\mathsf{w}}_{\Delta} \rangle.$$

Proposition

For consistent
$$\Delta$$
: $A \vdash_{\mathcal{M}^{w}(\Delta)} B$ iff $A \vdash_{\Delta}^{w} B$.

Idea:

 \blacktriangleright Order subsets of Δ by the "exceptionality" of the contained conditionals

Idea:

- \blacktriangleright Order subsets of Δ by the "exceptionality" of the contained conditionals
- ► To check if a conditional is entailed

Idea:

- \blacktriangleright Order subsets of Δ by the "exceptionality" of the contained conditionals
- To check if a conditional is entailed
 - \blacktriangleright find maximal subsets of Δ that are classically logical consistent with the antecedent

Idea:

- \blacktriangleright Order subsets of Δ by the "exceptionality" of the contained conditionals
- ► To check if a conditional is entailed
 - \blacktriangleright find maximal subsets of Δ that are classically logical consistent with the antecedent
 - sceptical reason about these sets

A conditional is *exceptional* for Δ if . . .

A conditional is *exceptional* for Δ if . . .

MP-seriousness ordering \prec^{MP}_{Δ} :

 \blacktriangleright strict partial ordering \prec^{MP}_Δ on subsets of Δ

A conditional is *exceptional* for Δ if . . .

MP-seriousness ordering \prec^{MP}_{Δ} :

- \blacktriangleright strict partial ordering \prec^{MP}_Δ on subsets of Δ
- based on the notion of exceptionality

A conditional is exceptional for Δ if \ldots

MP-seriousness ordering \prec^{MP}_{Δ} :

- \blacktriangleright strict partial ordering \prec^{MP}_Δ on subsets of Δ
- based on the notion of exceptionality
- ▶ sets containing fewer exceptional conditionals are lower in \prec^{MP}_{Δ}

MP-closure – Definition

Definition (MP-basis [Giordano Gliozzi 2021])

A set $D \subseteq \Delta$ is an *MP-basis* for A if

- A is consistent with $\tilde{D} = \{B \rightarrow C \mid (C|B) \in D\}$, and
- \blacktriangleright D is maximal with respect to the MP-seriousness ordering

Set of models based

MP-closure – Definition

Definition (MP-basis [Giordano Gliozzi 2021])

A set $D \subseteq \Delta$ is an *MP-basis* for A if

- A is consistent with $\tilde{D} = \{B \rightarrow C \mid (C|B) \in D\}$, and
- D is maximal with respect to the MP-seriousness ordering

MP-model:

Set of models based

Definition (MP-closure [Giordano Gliozzi 2021])

 $A \mathop{\sim}\limits^{MP} \Delta B$

if for all MP-bases D of A it holds that $\tilde{D} \cup \{A\} \models B$.

 \rightarrow Similar construction as in the definition of lexicographic inference [Lehmann 1995].

MP-closure coincides with system W (for consistent belief bases Δ).

MP-closure coincides with system W (for consistent belief bases Δ).

Show this in three steps:

Step 1: Characterization of MP-closure with MP-models [Giordano Gliozzi 2021].

MP-closure coincides with system W (for consistent belief bases Δ).

Show this in three steps:

Step 1: Characterization of MP-closure with *MP-models* [Giordano Gliozzi 2021]. Step 2: Show system W preferential models are MP-models.

MP-closure coincides with system W (for consistent belief bases Δ).

Show this in three steps:

Step 1: Characterization of MP-closure with MP-models [Giordano Gliozzi 2021].

Step 2: Show system W preferential models are MP-models.

Step 3: Prove main theorem.

certain type of preferential model

- certain type of preferential model
- \blacktriangleright obtained by applying a functor \mathcal{F}_{Δ} to preferential models

- certain type of preferential model
- \blacktriangleright obtained by applying a functor \mathcal{F}_Δ to preferential models
- \mathcal{F}_{Δ} orders states by comparing the conditionals falsified by each world with \prec^{MP}_{Δ}

- certain type of preferential model
- \blacktriangleright obtained by applying a functor \mathcal{F}_Δ to preferential models
- \mathcal{F}_{Δ} orders states by comparing the conditionals falsified by each world with \prec^{MP}_{Δ}

- certain type of preferential model
- \blacktriangleright obtained by applying a functor \mathcal{F}_{Δ} to preferential models
- \mathcal{F}_{Δ} orders states by comparing the conditionals falsified by each world with \prec^{MP}_{Δ}

Proposition (MP-closure representation theorem [GG21])

 $A \sim \Delta^{MP} B$ iff (B|A) is accepted by every MP-model of Δ

For a consistent belief base Δ :

For a consistent belief base Δ :

Proposition

 Δ tolerates $(B|A) \quad \textit{ iff } \quad (B|A) \textit{ is not exceptional for } \Delta$

For a consistent belief base Δ :

Proposition

 Δ tolerates (B|A) iff (B|A) is not exceptional for Δ

Proposition

$$\xi(\omega)\prec^{MP}_{\Delta}\xi(\omega') \quad \textit{ iff } \quad \omega<^{\sf w}_{\Delta}\omega'.$$

For a consistent belief base Δ :

Proposition

 Δ tolerates $(B|A) \quad \textit{iff} \quad (B|A) \textit{ is not exceptional for } \Delta$

Proposition

$$\xi(\omega) \prec^{MP}_{\Delta} \xi(\omega') \quad \textit{ iff } \quad \omega <^{\mathsf{w}}_{\Delta} \omega'.$$

Proposition

The system W preferential model $\mathcal{M}^{w}(\Delta)$ is an MP-model of Δ .

Proposition ([Giordano Gliozzi 2021])

Let $\mathcal{N}, \mathcal{N}'$ be MP-models of Δ .

 $A \succ_{\mathcal{N}} B$ iff $A \succ_{\mathcal{N}'} B$.

Proposition ([Giordano Gliozzi 2021])

Let $\mathcal{N}, \mathcal{N}'$ be MP-models of Δ .

 $A \sim_{\mathcal{N}} B$ iff $A \sim_{\mathcal{N}'} B$.

Theorem

For a consistent belief base Δ and $A, B \in \mathcal{L}_{\Sigma}$: $\blacktriangleright A \succ^{MP}_{\Delta} B$ iff $A \succ_{\mathcal{M}^{\mathbf{w}}(\Delta)} B$.

Proposition ([Giordano Gliozzi 2021])

Let $\mathcal{N}, \mathcal{N}'$ be MP-models of Δ .

 $A \vdash_{\mathcal{N}} B$ iff $A \vdash_{\mathcal{N}'} B$.

Theorem

For a consistent belief base Δ and $A, B \in \mathcal{L}_{\Sigma}$: $\blacktriangleright A \triangleright_{\Delta}^{MP} B$ iff $A \triangleright_{\mathcal{M}^{\mathbf{w}}(\Delta)} B$.

 $\blacktriangleright A \vdash {}^{MP}_{\Delta} B \quad iff \quad A \models {}^{w}_{\Delta} B.$

Theorem

For a consistent belief base Δ and $A, B \in \mathcal{L}_{\Sigma}$: $A \triangleright_{\Delta}^{MP} B$ iff $A \triangleright_{\Delta}^{w} B$.
For a consistent belief base Δ and $A, B \in \mathcal{L}_{\Sigma}$: $A \triangleright_{\Delta}^{MP} B$ iff $A \triangleright_{\Delta}^{w} B$.

This result yields

- ▶ a semantical characterization of system W
- that is less involved than the original definition/characterization.

For a consistent belief base Δ and $A, B \in \mathcal{L}_{\Sigma}$: $A \models \Delta^{MP} B$ iff $A \models \Delta^{w} B$.

This result yields

- ▶ a semantical characterization of system W
- that is less involved than the original definition/characterization.

Future work:

Further investigate the relations among inductive inference operators

For a consistent belief base Δ and $A, B \in \mathcal{L}_{\Sigma}$: $A \models \Delta^{MP} B$ iff $A \models \Delta^{w} B$.

This result yields

- ▶ a semantical characterization of system W
- that is less involved than the original definition/characterization.

Future work:

- Further investigate the relations among inductive inference operators
- Further investigate the connections to reasoning with first-order-conditionals

For a consistent belief base Δ and $A, B \in \mathcal{L}_{\Sigma}$: $A \models_{\Delta}^{MP} B$ iff $A \models_{\Delta}^{w} B$.

This result yields

- ▶ a semantical characterization of system W
- that is less involved than the original definition/characterization.

Future work:

- Further investigate the relations among inductive inference operators
- ▶ Further investigate the connections to reasoning with first-order-conditionals
- Generalize system W for belief bases containing strict knowledge (i.e. belief bases enforcing impossible worlds)